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Chapter 1

Introduction

The FE310-G000 is the first Freedom E300 SoC, and forms the basis of the HiFive1 develop-

ment board for the Freedom E300 family. The FE310-G000 is built around the E31 Core Com-

plex instantiated in the Freedom E300 platform and fabricated in the TSMC CL018G 180nm

process. This manual serves as an architectural reference and integration guide for the

FE310-G000.

The FE310-G000 is compatible with all applicable RISC‑V standards, and this document should

be read together with the official RISC‑V user-level, privileged, and external debug architecture

specifications.

1.1 FE310-G000 Overview

Figure 1 shows the overall block diagram of the FE310-G000.

A feature summary table can be found in Table 1.

8



FE310G-0000

E31 Core Complex

GPIO Complex

Always-On Domain

P
-B

u
s
: 

T
ile

L
in

k
 B

3
2

 D
3

2

QSPI0

Real-Time Clock

Platform-Level 

Interrupt Control

TAPC

Debug Module

Debug RAM (28B)

Instruction Fetch

RV32IMAC

Branch Prediction

Inst. Decompressor
Instruction Buffer

M

MLoad/Store

dip

eip

sip

Instruction Cache

(16KiB, 2-way)

Instruction Cache Ref ll M

OTP (8KiB)

Data SRAM (16KiB)

UART0

QSPI1

M

JTAG

1.8V AON Core

erst_n

QSPI Flash

GPIO

Multiplier/Divider

Watchdog

Core-Local Interrupt 

Control

Real-Time Clock Ticks

Backup Registers

PMU

Reset Unit

dwakeup_n

1.8V AON Pads

pmu_out_0

LFROSC

Mask ROM (8KiB)

Clock Generation

HFXOSC

PLL

HFROSC

vddpll

vsspll

hfxoscin

hfxoscout

UART1

PWM0 (8-bit)

PWM1 (16-bit)

QSPI2

C
-B

u
s
: 

T
ile

L
in

k
 B

3
2

 D
3

2

A
-B

u
s
: 

T
ile

L
in

k
 B

4
 D

3
2

M

hfclkrst

rtccmpip

wdogcmpip

Global 

Interrupts

1.8V MOFF Core

3.3V MOFF Pads

Core Reset Sync corerst
pmu_out_1

psdlfaltclk

psdlfaltclksel

PWM2 (16-bit)

Figure 1: FE310-G000 top-level block diagram.
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Feature Description
Available in

QFN48

RISC-V Core

1× E31 RISC‑V cores with machine mode only, 16 KiB

2-way L1 I-cache, and 16 KiB data tightly integrated mem-

ory (DTIM).

✔

Interrupts
Software and timer interrupts, 51 peripheral interrupts con-

nected to the PLIC with 7 levels of priority.
✔

UART 0
Universal Asynchronous/Synchronous Transmitters for

serial communication.
✔

UART 1
Universal Asynchronous/Synchronous Transmitters for

serial communication.

QSPI 0 Control
Serial Peripheral Interface. QSPI 0 Control has 1 chip

select signal.
✔

QSPI 1
Serial Peripheral Interface. QSPI 1 has 4 chip select sig-

nals.

✔

(3 CS lines)

(2 DQ lines)

QSPI 2
Serial Peripheral Interface. QSPI 2 has 1 chip select sig-

nal.

PWM 0 8-bit Pulse-width modulator with 4 comparators. ✔

PWM 1 16-bit Pulse-width modulator with 4 comparators. ✔

PWM 2 16-bit Pulse-width modulator with 4 comparators. ✔

GPIO 32 General Purpose I/O pins.
✔

(19 pins)

Always On

Domain
Supports low-power operation and wakeup. ✔

Table 1: FE310-G000 Feature Summary.

1.2 E31 RISC‑V Core

The FE310-G000 includes a 32-bit E31 RISC‑V core, which has a high-performance single-

issue in-order execution pipeline, with a peak sustainable execution rate of one instruction per

clock cycle. The E31 core supports Machine mode only as well as standard Multiply, Atomic,

and Compressed RISC‑V extensions (RV32IMAC).

The core is described in more detail in Chapter 3.

1.3 Interrupts

The FE310-G000 includes a RISC-V standard platform-level interrupt controller (PLIC), which

supports 51 global interrupts with 7 priority levels. The FE310-G000 also provides the standard

RISC‑V machine-mode timer and software interrupts via the Core-Local Interruptor (CLINT).

Interrupts are described in Chapter 8. The CLINT is described in Chapter 9. The PLIC is

described in Chapter 10.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 10



1.4 On-Chip Memory System

The E31 core has a(n) 2-way set-associative 16 KiB L1 instruction cache and a(n) 16 KiB L1

DTIM.

The Level 1 memories are described in Chapter 3.

1.5 Always-On (AON) Block

The AON block contains the reset logic for the chip, an on-chip low-frequency oscillator, a

watchdog timer, connections for an off-chip low-frequency oscillator, the real-time clock, a pro-

grammable power-management unit, and 16×32-bit backup registers that retain state while the

rest of the chip is in a low-power mode.

The AON can be instructed to put the system to sleep. The AON can be programmed to exit

sleep mode on a real-time clock interrupt or when the external digital wakeup pin, dwakeup_n, is

pulled low. The dwakeup_n input supports wired-OR connections of multiple wakeup sources.

The Always-On block is described in Chapter 12.

1.6 GPIO Complex

The GPIO complex manages the connection of digital I/O pads to digital peripherals, including

SPI, UART, and PWM controllers, as well as for regular programmed I/O operations.

The GPIO complex is described in more detail in Chapter 16.

1.7 Universal Asynchronous Receiver/Transmitter

Multiple universal asynchronous receiver/transmitter (UARTs) are available and provide a

means for serial communication between the FE310-G000 and off-chip devices.

The UART peripherals are described in Chapter 17.

1.8 Hardware Serial Peripheral Interface (SPI)

There are 3 serial peripheral interface (SPI) controllers. Each controller provides a means for

serial communication between the FE310-G000 and off-chip devices, like quad-SPI Flash mem-

ory. Each controller supports master-only operation over single-lane, dual-lane, and quad-lane

protocols. Each controller supports burst reads of 32 bytes over TileLink to accelerate instruc-

tion cache refills. 1 SPI controller can be programmed to support eXecute-In-Place (XIP) modes

to reduce SPI command overhead on instruction cache refills.

The SPI interface is described in more detail in Chapter 18.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 11



1.9 Pulse Width Modulation

The pulse width modulation (PWM) peripheral can generate multiple types of waveforms on

GPIO output pins and can also be used to generate several forms of internal timer interrupt.

The PWM peripherals are described in Chapter 19.

1.10 Debug Support

The FE310-G000 provides external debugger support over an industry-standard JTAG port,

including 2 hardware-programmable breakpoints per hart.

Debug support is described in detail in Chapter 20, and the debug interface is described in

Chapter 21.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 12



Chapter 2

List of Abbreviations and Terms
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Term Definition

BHT Branch History Table

BTB Branch Target Buffer

RAS Return-Address Stack

CLINT Core-Local Interruptor. Generates per-hart software interrupts and timer

interrupts.

CLIC Core-Local Interrupt Controller. Configures priorities and levels for core

local interrupts.

hart HARdware Thread

DTIM Data Tightly Integrated Memory

ITIM Instruction Tightly Integrated Memory

JTAG Joint Test Action Group

LIM Loosely Integrated Memory. Used to describe memory space delivered in

a SiFive Core Complex but not tightly integrated to a CPU core.

PMP Physical Memory Protection

PLIC Platform-Level Interrupt Controller. The global interrupt controller in a

RISC-V system.

TileLink A free and open interconnect standard originally developed at UC Berke-

ley.

RO Used to describe a Read Only register field.

RW Used to describe a Read/Write register field.

WO Used to describe a Write Only registers field.

WARL Write-Any Read-Legal field. A register field that can be written with any

value, but returns only supported values when read.

WIRI Writes-Ignored, Reads-Ignore field. A read-only register field reserved for

future use. Writes to the field are ignored, and reads should ignore the

value returned.

WLRL Write-Legal, Read-Legal field. A register field that should only be written

with legal values and that only returns legal value if last written with a

legal value.

WPRI Writes-Preserve Reads-Ignore field. A register field that might contain

unknown information. Reads should ignore the value returned, but writes

to the whole register should preserve the original value.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 14



Chapter 3

E31 RISC-V Core

This chapter describes the 32-bit E31 RISC‑V processor core used in the FE310-G000. The

E31 processor core comprises an instruction memory system, an instruction fetch unit, an exe-

cution pipeline, a data memory system, and support for global, software, and timer interrupts.

The E31 feature set is summarized in Table 2.

Feature Description

ISA RV32IMAC.

Instruction Cache 16 KiB 2-way instruction cache.

Data Tightly Integrated Memory 16 KiB DTIM.

Modes The E31 supports the following modes:

Machine

Table 2: E31 Feature Set

3.1 Instruction Memory System

The instruction memory system consists of a dedicated 16 KiB 2-way set-associative instruction

cache. The access latency of all blocks in the instruction memory system is one clock cycle. The

instruction cache is not kept coherent with the rest of the platform memory system. Writes to

instruction memory must be synchronized with the instruction fetch stream by executing a

FENCE.I instruction.

The instruction cache has a line size of 32 bytes, and a cache line fill triggers a burst access.

The core caches instructions from executable addresses. See the FE310-G000 Memory Map in

Chapter 4 for a description of executable address regions that are denoted by the attribute X.

Trying to execute an instruction from a non-executable address results in a synchronous trap.
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3.2 Instruction Fetch Unit

The E31 instruction fetch unit contains branch prediction hardware to improve performance of

the processor core. The branch predictor comprises a 40-entry branch target buffer (BTB) which

predicts the target of taken branches, a 128-entry branch history table (BHT), which predicts the

direction of conditional branches, and a 2-entry return-address stack (RAS) which predicts the

target of procedure returns. The branch predictor has a one-cycle latency, so that correctly pre-

dicted control-flow instructions result in no penalty. Mispredicted control-flow instructions incur a

three-cycle penalty.

The E31 implements the standard Compressed (C) extension to the RISC‑V architecture, which

allows for 16-bit RISC‑V instructions.

3.3 Execution Pipeline

The E31 execution unit is a single-issue, in-order pipeline. The pipeline comprises five stages:

instruction fetch, instruction decode and register fetch, execute, data memory access, and regis-

ter writeback.

The pipeline has a peak execution rate of one instruction per clock cycle, and is fully bypassed

so that most instructions have a one-cycle result latency. There are several exceptions:

• LW has a two-cycle result latency, assuming a cache hit.

• LH, LHU, LB, and LBU have a three-cycle result latency, assuming a cache hit.

• CSR reads have a three-cycle result latency.

• MUL, MULH, MULHU, and MULHSU have a 5-cycle result latency.

• DIV, DIVU, REM, and REMU have between a 2-cycle and 33-cycle result latency, depending

on the operand values.

The pipeline only interlocks on read-after-write and write-after-write hazards, so instructions

may be scheduled to avoid stalls.

The E31 implements the standard Multiply (M) extension to the RISC‑V architecture for integer

multiplication and division. The E31 has a 8-bit per cycle hardware multiply and a 1-bit per cycle

hardware divide. The multiplier can only execute one operation at a time and will block until the

previous operation completes.

The hart will not abandon a Divide instruction in flight. This means if an interrupt handler tries to

use a register that is the destination register of a divide instruction the pipeline stalls until the

divide is complete.

Branch and jump instructions transfer control from the memory access pipeline stage. Correctly-

predicted branches and jumps incur no penalty, whereas mispredicted branches and jumps

incur a three-cycle penalty.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 16



Most CSR writes result in a pipeline flush with a five-cycle penalty.

3.4 Data Memory System

The E31 data memory system consists of a DTIM. The access latency from a core to its own

DTIM is two clock cycles for full words and three clock cycles for smaller quantities. Misaligned

accesses are not supported in hardware and result in a trap to allow software emulation.

Stores are pipelined and commit on cycles where the data memory system is otherwise idle.

Loads to addresses currently in the store pipeline result in a five-cycle penalty.

3.5 Atomic Memory Operations

The E31 core supports the RISC‑V standard Atomic (A) extension on the DTIM and the periph-

eral memory region. Atomic memory operations to regions that do not support them generate an

access exception precisely at the core.

The load-reserved and store-conditional instructions are only supported on cached regions,

hence generate an access exception on DTIM and other uncached memory regions.

See The RISC‑V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1 for more infor-

mation on the instructions added by this extension.

3.6 Hardware Performance Monitor

The FE310-G000 supports a basic hardware performance monitoring facility compliant with The

RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10. The mcycle

CSR holds a count of the number of clock cycles the hart has executed since some arbitrary

time in the past. The minstret CSR holds a count of the number of instructions the hart has

retired since some arbitrary time in the past. Both are 64-bit counters. The mcycle and

minstret CSRs hold the 32 least-significant bits of the corresponding counter, and the mcycleh

and minstreth CSRs hold the most-significant 32 bits.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 17



Chapter 4

Memory Map

The memory map of the FE310-G000 is shown in Table 3.
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Base Top Attr. Description Notes

0x0000_0000 0x0000_00FF Reserved

0x0000_0100 0x0000_0FFF RWXCA Debug
Debug Address Space

0x0000_1000 0x0000_1FFF R XC Mask ROM (4 KiB)

0x0000_2000 0x0001_FFFF Reserved

0x0002_0000 0x0002_1FFF R XC OTP Memory Region

(8 KiB)

0x0002_2000 0x01FF_FFFF Reserved

On-Chip Non Volatile

Memory

0x0200_0000 0x0200_FFFF RW A CLINT

0x0201_0000 0x0BFF_FFFF Reserved

0x0C00_0000 0x0FFF_FFFF RW A PLIC

0x1000_0000 0x1000_7FFF RW A AON

0x1000_8000 0x1000_FFFF RW A PRCI

0x1001_0000 0x1001_0FFF RW A OTP Control

0x1001_1000 0x1001_1FFF Reserved

0x1001_2000 0x1001_2FFF RW A GPIO

0x1001_3000 0x1001_3FFF RW A UART 0

0x1001_4000 0x1001_4FFF RW A QSPI 0 Control

0x1001_5000 0x1001_5FFF RW A PWM 0

0x1001_6000 0x1002_2FFF Reserved

0x1002_3000 0x1002_3FFF RW A UART 1

0x1002_4000 0x1002_4FFF RW A QSPI 1

0x1002_5000 0x1002_5FFF RW A PWM 1

0x1002_6000 0x1003_3FFF Reserved

0x1003_4000 0x1003_4FFF RW A QSPI 2

0x1003_5000 0x1003_5FFF RW A PWM 2

0x1003_6000 0x1FFF_FFFF Reserved

On-Chip Peripherals

0x2000_0000 0x3FFF_FFFF R XCA QSPI 0 Flash (512 MiB)

0x4000_0000 0x7FFF_FFFF Reserved

Off-Chip Non-Volatile

Memory

0x8000_0000 0x8000_3FFF RWXCA DTIM (16 KiB)

0x8000_4000 0xFFFF_FFFF Reserved
On-Chip Volatile Memory

Table 3: FE310-G000 Memory Map. Memory Attributes: R - Read, W - Write, X - Execute, C -

Cacheable, A - Atomics
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Chapter 5

Boot Process

This chapter describes the operation of FE310-G000 during the boot process.

5.1 Non-volatile Code Options

There are four possible sources of non-volatile memory from which code can be initially fetched

on a FE310-G000 system: Gate ROM, Mask ROM, OTP, and off-chip SPI flash.

5.1.1 Gate ROM (GROM)

The debug ROM is built from gate ROM and contains code for the debug interrupt handler that

jumps to debug RAM, as well as code to wait for a debug interrupt.

The default value of mtvec, the trap vector base address, is set to 0x0. Fetches from address

0x0 are hardwired to return 0, which is an illegal instruction, causing another trap, hence caus-

ing the processor to spin in a trap loop on any fetch to address 0.

The trap loop is used to hold the processor when waiting for the debugger to download code to

be executed. The debugger can issue a debug interrupt, which causes the processor to jump to

the debug interrupt handler in debug ROM, which in turn jumps to the code written to the debug

RAM. The debug RAM code can be used to bootstrap download of further code.

5.1.2 Mask ROM (MROM)

MROM is fixed at design time, and is located on the peripheral bus on FE310-G000, but instruc-

tions fetched from MROM are cached by the core’s I-cache. The MROM contains an instruction

at address 0x1000 which jumps to the OTP start address at 0x2_0000.
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5.1.3 One-Time Programmable (OTP) Memory

The OTP is located on the peripheral bus, with both a control register interface to program the

OTP, and a memory read port interface to fetch words from the OTP. Instruction fetches from the

OTP memory read port are cached in the E31 core’s instruction cache.

The OTP needs to be programmed before use and can only be programmed by code running

on the core. The OTP bits contain all 0s prior to programming.

5.1.4 Quad SPI Flash Controller (QSPI)

The dedicated QSPI flash controller connects to external SPI flash devices that are used for

execute-in-place code. SPI flash is not available in certain scenarios such as package testing or

board designs not using SPI flash (e.g., just using on-chip OTP).

Off-chip SPI devices can vary in number of supported I/O bits (1, 2, or 4). SPI flash bits contain

all 1s prior to programming.

5.2 Reset and Trap Vectors

FE310-G000 fetches the first instruction out of reset from 0x1000. The instruction stored there

jumps straight to OTP at 0x2_0000, and will either enter a trap loop if the OTP is not pro-

grammed, or start running the OTP code.
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Chapter 6

Clock Generation

The FE310-G000 supports many alternative clock-generation schemes to match application

needs. This chapter describes the structure of the clock generation system. The various clock

configuration registers live either in the AON block (Chapter 12) or the PRCI block (Section 6.2).

6.1 Clock Generation Overview

Figure 2: FE310-G000 clock generation scheme

Figure 2 shows an overview of the FE310-G000 clock generation scheme. Most digital clocks

on the chip are divided down from a central high-frequency clock hfclk produced from either

the PLL or an on-chip trimmable oscillator. The PLL can be driven from either the on-chip oscil-
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lator or an off-chip crystal oscillator. The off-chip oscillator can also drive the high-frequency

clock directly.

For the FE310-G000, the TileLink bus clock (tlclk) is fixed to be the same as the processor

core clock (coreclk).

The Always-On block includes a real-time clock circuit that is driven from one of the low-fre-

quency clock sources: an off-chip oscillator (LFOSC) or an an on-chip low-frequency oscillator

(LFROSC).

6.2 PRCI Address Space Usage

PRCI (Power, Reset, Clock, Interrupt) is an umbrella term for platform non-AON memory-

mapped control and status registers controlling component power states, resets, clock selection,

and low-level interrupts, hence the name. The AON block contains registers with similar func-

tions, but only for the AON block units.

Table 4 shows the memory map for the PRCI on the FE310-G000.

Offset Name Description

0x0 hfrosccfg Ring Oscillator Configuration and Status

0x4 hfxosccfg Crystal Oscillator Configuration and Status

0x8 pllcfg PLL Configuration and Status

0xC plloutdiv PLL Final Divide Configuration

6.3 Internal Trimmable Programmable 72 MHz Oscillator

(HFROSC)

An internal trimmable high-frequency ring oscillator (HFROSC) is used to provide the default

clock after reset, and can be used to allow operation without an external high-frequency crystal

or the PLL.

The oscillator is controlled by the hfrosccfg register, which is memory-mapped in the PRCI

address space, and whose format is shown in Table 5.

Table 4: SiFive PRCI memory map, offsets relative to PRCI base address.
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hfrosccfg: Ring Oscillator Configuration and Status (hfrosccfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[5:0] hfroscdiv RW 0x4 Ring Oscillator Divider Register

[15:6] Reserved

[20:16] hfrosctrim RW 0x10 Ring Oscillator Trim Register

[29:21] Reserved

30 hfroscen RW 0x1 Ring Oscillator Enable

31 hfroscrdy RO X Ring Oscillator Ready

The frequency can be adjusted in software using a 5-bit trim value in the hfrosctrim. The trim

value (from 0–31) adjusts which tap of the variable delay chain is fed back to the start of the

ring. A value of 0 corresponds to the longest chain and slowest frequency, while higher values

correspond to shorter chains and therefore higher frequencies.

The HFROSC oscillator output frequency can be divided by an integer between 1 and 64 giving

a frequency range of 1.125 MHz–72 MHz assuming the trim value is set to give a 72 MHz out-

put. The value of the divider is given in the hfroscdiv field, where the divide ratio is one greater

than the binary value held in the field (i.e., hfroscdiv=0 indicates divide by 1, hfroscdiv=1

indicates divide by 2, etc.). The value of the divider can be changed at any time.

The HFROSC is the default clock source used for the system core at reset. After a reset, the

hfrosctrim value is reset to 16, the middle of the adjustable range, and the divider is reset to

divide-by-5 (hfroscdiv=4), which gives a nominal 13.8 MHz (±50%) output frequency.

The value of hfrosctrim that most closely achieves an 72 MHz clock output at nominal condi-

tions (1.8 V at 25 °C) is determined by manufacturing-time calibration and is stored in on-chip

OTP storage. Upon reset, software in the processor boot sequence can write the calibrated

value into the hfrosctrim field, but the value can be altered at any time during operation

including when the processor is running from HFROSC.

To save power, the HFROSC can be disabled by clearing hfroscen. The processor must be

running from a different clock source (the PLL, external crystal, or external clock) before dis-

abling HFROSC. HFROSC can be explicitly renabled by setting hfroscen. HFROSC will be

automatically re-enabled at every reset.

The status bit hfroscrdy indicates if the oscillator is operational and ready for use as a clock

source.

6.4 External 16 MHz Crystal Oscillator (HFXOSC)

An external high-frequency 16 MHz crystal oscillator can be used to provide a precise clock

source. The crystal oscillator should have a capacitive load of ≤ 12 pF and an ESR ≤ 80 Ω.

Table 5: hfrosccfg: Ring Oscillator Configuration and Status
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When used to drive the PLL, the 16 MHz crystal oscillator output frequency must be divided by

two in the first-stage divider of the PLL (i.e., ) to provide an 8 MHz reference clock to the

VCO.

The input pad of the HFXOSC can also be used to supply an external clock source, in which

case, the output pad should be left unconnected.

The HFXOSC input can be used to generate hfclk directly if the PLL is set to bypass.

The HFXOSC is controlled via the memory-mapped hfxosccfg register.

hfxosccfg: Crystal Oscillator Configuration and Status (hfxosccfg)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[29:0] Reserved

30 hfxoscen RW 0x1 Crystal Oscillator Enable

31 hfxoscrdy RO X Crystal Oscillator Ready

The hfxoscen bit turns on the crystal driver and is set on wakeup reset, but can be cleared to

turn off the crystal driver and reduce power consumption. The hfxoscrdy bit indicates if the

crystal oscillator output is ready for use.

The hfxoscen bit must also be turned on to use the HFXOSC input pad to connect an external

clock source.

6.5 Internal High-Frequency PLL (HFPLL)

The PLL generates a high-frequency clock by multiplying a mid-frequency reference source

clock, either the HFROSC or the HFXOSC. The input frequency to the PLL can be in the range

6–48 MHz. The PLL can generate output clock frequencies in the range 48–384 MHz.

The PLL is controlled by a memory-mapped read-write pllcfg register in the PRCI address

space. The format of pllcfg is shown in Table 7.

Table 6: hfxosccfg: Crystal Oscillator Configuration and Status
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pllcfg: PLL Configuration and Status (pllcfg)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

[2:0] pllr RW 0x1 PLL R Value

3 Reserved

[9:4] pllf RW 0x1F PLL F Value

[11:10] pllq RW 0x3 PLL Q Value

[15:12] Reserved

16 pllsel RW 0x0 PLL Select

17 pllrefsel RW 0x1 PLL Reference Select

18 pllbypass RW 0x1 PLL Bypass

[30:19] Reserved

31 plllock RO X PLL Lock

Figure 3 shows how the PLL output frequency is set using a combination of three read-write

fields: pllr[2:0], pllf[2:0], pllq[1:0]. The frequency constraints must be observed

between each stage for correct operation.

Figure 3: Controlling the FE310-G000 PLL output frequency.

The pllr[1:0] field encodes the reference clock divide ratio as a 2-bit binary value, where the

value is one less than the divide ratio (i.e., 00=1, 11=4). The frequency of the output of the refer-

ence divider (refr) must lie between 6–12 MHz.

The pllf[5:0] field encodes the PLL VCO multiply ratio as a 6-bit binary value, , signifying a

divide ratio of (i.e., 000000=2, 111111=128). The frequency of the VCO output

(vco) must lie between 384–768 MHz. Table 8 summarizes the valid settings of the multiply

ratio.

Table 7: pllcfg: PLL Configuration and Status
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Legal pllf multiplier vco frequency (MHz)refr (MHz)

Min Max Min Max

6 64 128 384 768

8 48 96 384 768

10 39 76 390 760

12 32 64 384 768

Table 8: Valid PLL multiply ratios. The multiplier setting in the

table is given as the actual multiply ratio; the binary value

stored in pllf field should be for a multiply ratio

.

The pllq[1:0] field encodes the PLL output divide ratio as follows, 01=2, 10=4, 11=8. The

value 00 is not supported. The final output of the PLL must have a frequency that lies between

48–384 MHz.

The one-bit read-write pllbypass field in the pllcfg register turns off the PLL when written with

a 1 and then pllout is driven directly by the clock indicated by pllrefsel. The other PLL reg-

isters can be configured when pllbypass is set. The agent that writes pllcfg should be run-

ning from a different clock source before disabling the PLL. The PLL is also disabled with

pllbypass=1 after a wakeup reset.

The pllsel bit must be set to drive the final hfclk with the PLL output, bypassed or otherwise.

When pllsel is clear, the hfroscclk directly drives hfclk. The pllsel bit is clear on wakeup

reset.

The pllcfg register is reset to: bypass and power off the PLL pllbypass=1; input driven from

external HFXOSC oscillator pllrefsel=1; PLL not driving system clock pllsel=0; and the PLL

ratios are set to R=2, F=64, and Q=8 (pllr=01, pllf=011111, pllq=11).

The PLL provides a lock signal which is set when the PLL has achieved lock, and which can be

read from the most-significant bit of the pllcfg register. The PLL requires up to 100 μs to

regain lock once enabled, and the lock signal will not necessarily be stable during this initial lock

period so should only be interrogated after this period. The PLL may not achieve lock and the

lock signal might not remain asserted if there is excessive jitter in the source clock.

The PLL requires dedicated 1.8 V power supply pads with a supply filter on the circuit board.

The supply filter should be a 100 Ω resistor in series with the board 1.8 V supply decoupled with

a 100 nF capacitor across the VDDPLL/VSSPLL supply pins. The VSSPLL pin should not be

connected to board VSS.

6.6 PLL Output Divider

The plloutdiv register controls a clock divider that divides the output of the PLL.
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plloutdiv: PLL Final Divide Configuration (plloutdiv)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

[5:0] plloutdiv RW 0x0 PLL Final Divider Value

[7:6] Reserved

[13:8] plloutdivby1 RW 0x1 PLL Final Divide By 1

[31:14] Reserved

If the plloutdivby1 bit is set, the PLL output clock is passed through undivided. If

plloutdivby1 is clear, the value in plloutdiv sets the clock-divide ratio to

(between 2–128). The output divider expands the PLL output frequency range to

0.375–384 MHz.

The plloutdivby1 register is reset to divide-by-1 (plloutdivby1=1).

6.7 Internal Programmable Low-Frequency Ring Oscillator

(LFROSC)

A second programmable ring oscillator (LFROSC) is used to provide an internal low-frequency

32 kHz clock source. The LFROSC can generate frequencies in the range 1.5–230 kHz

(±45%).

The lfrosccfg register lives in the AON block as shown in Table 31.

At power-on reset, the LFROSC resets to selecting the middle tap (lfrosctrim=16) and ÷5

(lfroscdiv=4), resulting in an output frequency of 30 kHz.

The LFROSC can be calibrated in software using a more accurate high-frequency clock source.

lfrosccfg: Ring Oscillator Configuration and Status (lfrosccfg)

Register Offset 0x70

Bits Field Name Attr. Rst. Description

[5:0] lfroscdiv RW 0x4 Ring Oscillator Divider Register

[15:6] Reserved

[20:16] lfrosctrim RW 0x10 Ring Oscillator Trim Register

[29:21] Reserved

30 lfroscen RW 0x1 Ring Oscillator Enable

31 lfroscrdy RO X Ring Oscillator Ready

Table 9: plloutdiv: PLL Final Divide Configuration

Table 10: lfrosccfg: Ring Oscillator Configuration and Status
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6.8 Alternate Low-Frequency Clock (LFALTCLK)

An external low-frequency clock can be driven on the psdlfaltclk pad, when the

psdlfaltclksel is tied low. This mux selection can only be controlled by external pads, it is not

controllable by software.

6.9 Clock Summary

Table 11 summarizes the major clocks on the FE310-G000 and their initial reset conditions. At

power-on reset, the AON domain lfclk is clocked by either the LFROSC or psdlfaltclk, as

selected by psdlfaltclksel. At wakeup reset, the MOFF domain hfclk is clocked by the

HFROSC.

FrequencyName Reset

Source Reset Min Max

Notes

AON Domain

LFROSC lfroscrst 32 kHz 1.5 kHz 230 kHz ±45%

psdlfaltclk - - 0 kHz 500 kHz When selected

by

psdlfaltclksel

MOFF Domain

HFROSC hfclkrst 13.8 MHz 0.77 MHz 20 MHz ±45%

HFXOSC crystal hfclkrst ON 10 MHz 20 MHz 16 MHz on

HiFive

HFXOSC input hfclkrst ON 0 MHz 20 MHz External clock

source

PLL hfclkrst OFF 0.375 MHz 384 MHz

JTAG TCK - OFF 0 MHz 16 MHz

Table 11: FE310-G000 Clock Sources
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Chapter 7

Power Modes

This chapter describes the different power modes available on the FE310-G000. The

FE310-G000 supports three power modes: Run, Wait, and Sleep.

7.1 Run Mode

Run mode corresponds to regular execution where the processor is running. Power consump-

tion can be adjusted by varying the clock frequency of the processor and peripheral bus, and by

enabling or disabling individual peripheral blocks. The processor exits run mode by executing a

"Wait for Interrupt" (WFI) instruction.

7.2 Wait Mode

When the processor executes a WFI instruction it enters Wait mode, which halts instruction exe-

cution and gates the clocks driving the processor pipeline. All state is preserved in the system.

The processor will resume in Run mode when there is a local interrupt pending or when the

PLIC sends an interrupt notification. The processor may also exit wait mode for other events,

and software must check system status when exiting wait mode to determine the correct course

of action.

7.3 Sleep Mode

Sleep mode is entered by writing to a memory-mapped register pmusleep in the power-man-

agement unit (PMU). The pmusleep register is protected by the pmukey register which must be

written with a defined value before writing to pmusleep.

The PMU will then execute a power-down sequence to turn off power to the processor and main

pads. All volatile state in the system is lost except for state held in the AON domain. The main

output pads will be left floating.
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Sleep mode is exited when an enabled wakeup event occurs, whereupon the PMU will initiate a

wakeup sequence. The wakeup sequence turns on the core and pad power supplies while

asserting reset on the clocks, core and pads. After the power supplies stabilize, the clock reset

is deasserted to allow the clocks to stabilize. Once the clocks are stable, the pad and processor

resets are deasserted, and the processor begins running from the reset vector.

Software must reinitialize the core and can interrogate the PMU pmucause register to determine

the cause of reset, and can recover pre-sleep state from the backup registers. The processor

always initially runs from the HFROSC at the default setting, and must reconfigure clocks to run

from an alternate clock source (HFXOSC or PLL) or at a different setting on the HFROSC.

Because the FE310-G000 has no internal power regulator, the PMU’s control of the power sup-

plies is through chip outputs, pmu_out_0 and pmu_out_1. The system integrator can use these

outputs to enable and disable the power supplies connected to the FE310-G000.
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Chapter 8

Interrupts

This chapter describes how interrupt concepts in the RISC‑V architecture apply to the

FE310-G000.

The definitive resource for information about the RISC‑V interrupt architecture is The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

8.1 Interrupt Concepts

The FE310-G000 supports Machine Mode interrupts. It also has support for the following types

of RISC‑V interrupts: local and global.

Local interrupts are signaled directly to an individual hart with a dedicated interrupt value. This

allows for reduced interrupt latency as no arbitration is required to determine which hart will ser-

vice a given request and no additional memory accesses are required to determine the cause of

the interrupt.

Software and timer interrupts are local interrupts generated by the Core-Local Interruptor

(CLINT). The FE310-G000 contains no other local interrupt sources.

Global interrupts, by contrast, are routed through a Platform-Level Interrupt Controller (PLIC),

which can direct interrupts to any hart in the system via the external interrupt. Decoupling global

interrupts from the hart(s) allows the design of the PLIC to be tailored to the platform, permitting

a broad range of attributes like the number of interrupts and the prioritization and routing

schemes.

This chapter describes the FE310-G000 interrupt architecture.

Chapter 9 describes the Core-Local Interruptor.

Chapter 10 describes the global interrupt architecture and the PLIC design.

The FE310-G000 interrupt architecture is depicted in Figure 4.
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Figure 4: FE310-G000 Interrupt Architecture Block Diagram.

8.2 Interrupt Operation

If the global interrupt-enable mstatus.MIE is clear, then no interrupts will be taken. If

mstatus.MIE is set, then pending-enabled interrupts at a higher interrupt level will preempt cur-

rent execution and run the interrupt handler for the higher interrupt level.

When an interrupt or synchronous exception is taken, the privilege mode is modified to reflect

the new privilege mode. The global interrupt-enable bit of the handler’s privilege mode is

cleared.

8.2.1 Interrupt Entry and Exit

When an interrupt occurs:

• The value of mstatus.MIE is copied into mcause.MPIE, and then mstatus.MIE is cleared,

effectively disabling interrupts.

• The privilege mode prior to the interrupt is encoded in mstatus.MPP.

• The current pc is copied into the mepc register, and then pc is set to the value specified by

mtvec as defined by the mtvec.MODE described in Table 14.

At this point, control is handed over to software in the interrupt handler with interrupts disabled.

Interrupts can be re-enabled by explicitly setting mstatus.MIE or by executing an MRET instruc-

tion to exit the handler. When an MRET instruction is executed, the following occurs:

• The privilege mode is set to the value encoded in mstatus.MPP.

• The global interrupt enable, mstatus.MIE, is set to the value of mcause.MPIE.
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• The pc is set to the value of mepc.

At this point control is handed over to software.

The Control and Status Registers involved in handling RISC‑V interrupts are described in Sec-

tion 8.3.

8.3 Interrupt Control Status Registers

The FE310-G000 specific implementation of interrupt CSRs is described below. For a complete

description of RISC‑V interrupt behavior and how to access CSRs, please consult The RISC‑V

Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

8.3.1 Machine Status Register (mstatus)

The mstatus register keeps track of and controls the hart’s current operating state, including

whether or not interrupts are enabled. A summary of the mstatus fields related to interrupts in

the FE310-G000 is provided in Table 12. Note that this is not a complete description of mstatus

as it contains fields unrelated to interrupts. For the full description of mstatus, please consult

the The RISC‑V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.10.

Machine Status Register

CSR mstatus

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MIE RW Machine Interrupt Enable

[6:4] Reserved WPRI

7 MPIE RW Machine Previous Interrupt Enable

[10:8] Reserved WPRI

[12:11] MPP RW Machine Previous Privilege Mode

Table 12: FE310-G000 mstatus Register (partial)

Interrupts are enabled by setting the MIE bit in mstatus and by enabling the desired individual

interrupt in the mie register, described in Section 8.3.3.

8.3.2 Machine Trap Vector (mtvec)

The mtvec register has two main functions: defining the base address of the trap vector, and

setting the mode by which the FE310-G000 will process interrupts. The interrupt processing

mode is defined in the lower two bits of the mtvec register as described in Table 14.
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Machine Trap Vector Register

CSR mtvec

Bits Field Name Attr. Description

[1:0] MODE WARL MODE Sets the interrupt processing mode.

The encoding for the FE310-G000 supported

modes is described in Table 14.

[31:2] BASE[31:2] WARL Interrupt Vector Base Address. Requires

64-byte alignment.

Table 13: mtvec Register

MODE Field Encoding mtvec.MODE

Value Name Description

0x0 Direct All exceptions set pc to BASE

≥ 1 Reserved

Table 14: Encoding of mtvec.MODE

See Table 13 for a description of the mtvec register. See Table 14 for a description of the

mtvec.MODE field. See Table 18 for the FE310-G000 interrupt exception code values.

Mode Direct

When operating in direct mode all synchronous exceptions and asynchronous interrupts trap to

the mtvec.BASE address. Inside the trap handler, software must read the mcause register to

determine what triggered the trap.

8.3.3 Machine Interrupt Enable (mie)

Individual interrupts are enabled by setting the appropriate bit in the mie register. The mie regis-

ter is described in Table 15.

Machine Interrupt Enable Register

CSR mie

Bits Field Name Attr. Description

[2:0] Reserved WPRI

3 MSIE RW Machine Software Interrupt Enable

[6:4] Reserved WPRI

7 MTIE RW Machine Timer Interrupt Enable

[10:8] Reserved WPRI

11 MEIE RW Machine External Interrupt Enable

[31:12] Reserved WPRI

Table 15: mie Register
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8.3.4 Machine Interrupt Pending (mip)

The machine interrupt pending (mip) register indicates which interrupts are currently pending.

The mip register is described in Table 16.

Machine Interrupt Pending Register

CSR mip

Bits Field Name Attr. Description

[2:0] Reserved WIRI

3 MSIP RO Machine Software Interrupt Pending

[6:4] Reserved WIRI

7 MTIP RO Machine Timer Interrupt Pending

[10:8] Reserved WIRI

11 MEIP RO Machine External Interrupt Pending

[31:12] Reserved WIRI

Table 16: mip Register

8.3.5 Machine Cause (mcause)

When a trap is taken in machine mode, mcause is written with a code indicating the event that

caused the trap. When the event that caused the trap is an interrupt, the most-significant bit of

mcause is set to 1, and the least-significant bits indicate the interrupt number, using the same

encoding as the bit positions in mip. For example, a Machine Timer Interrupt causes mcause to

be set to 0x8000_0007. mcause is also used to indicate the cause of synchronous exceptions, in

which case the most-significant bit of mcause is set to 0.

See Table 17 for more details about the mcause register. Refer to Table 18 for a list of synchro-

nous exception codes.

Machine Cause Register

CSR mcause

Bits Field Name Attr. Description

[9:0] Exception Code WLRL A code identifying the last exception.

[30:10] Reserved WLRL

31 Interrupt WARL 1 if the trap was caused by an interrupt; 0

otherwise.

Table 17: mcause Register
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Interrupt Exception Codes

Interrupt Exception Code Description

1 0–2 Reserved

1 3 Machine software interrupt

1 4–6 Reserved

1 7 Machine timer interrupt

1 8–10 Reserved

1 11 Machine external interrupt

1 ≥ 12 Reserved

0 0 Instruction address misaligned

0 1 Instruction access fault

0 2 Illegal instruction

0 3 Breakpoint

0 4 Load address misaligned

0 5 Load access fault

0 6 Store/AMO address misaligned

0 7 Store/AMO access fault

0 8–10 Reserved

0 11 Environment call from M-mode

0 ≥ 12 Reserved

Table 18: mcause Exception Codes

8.4 Interrupt Priorities

Individual priorities of global interrupts are determined by the PLIC, as discussed in Chapter 10.

FE310-G000 interrupts are prioritized as follows, in decreasing order of priority:

• Machine external interrupts

• Machine software interrupts

• Machine timer interrupts

8.5 Interrupt Latency

Interrupt latency for the FE310-G000 is 4 cycles, as counted by the numbers of cycles it takes

from signaling of the interrupt to the hart to the first instruction fetch of the handler.

Global interrupts routed through the PLIC incur additional latency of 3 cycles where the PLIC is

clocked by coreClk. This means that the total latency, in cycles, for a global interrupt is: 4 + 3.

This is a best case cycle count and assumes the handler is cached or located in ITIM. It does

not take into account additional latency from a peripheral source.
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Chapter 9

Core-Local Interruptor (CLINT)

The CLINT block holds memory-mapped control and status registers associated with software

and timer interrupts. The FE310-G000 CLINT complies with The RISC‑V Instruction Set Manual,

Volume II: Privileged Architecture, Version 1.10.

9.1 CLINT Memory Map

Table 19 shows the memory map for CLINT on SiFive FE310-G000.

Address Width Attr. Description Notes

0x2000000 4B RW msip for hart 0 MSIP Registers (1 bit wide)

0x2004008

…

0x200bff7

Reserved

0x2004000 8B RW mtimecmp for hart 0 MTIMECMP Registers

0x2004008

…

0x200bff7

Reserved

0x200bff8 8B RW mtime Timer Register

0x200c000 Reserved

Table 19: CLINT Register Map

9.2 MSIP Registers

Machine-mode software interrupts are generated by writing to the memory-mapped control reg-

ister msip. Each msip register is a 32-bit wide WARL register where the upper 31 bits are tied to

0. The least significant bit is reflected in the MSIP bit of the mip CSR. Other bits in the msip reg-

ister are hardwired to zero. On reset, each msip register is cleared to zero.

Software interrupts are most useful for interprocessor communication in multi-hart systems, as

harts may write each other’s msip bits to effect interprocessor interrupts.
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9.3 Timer Registers

mtime is a 64-bit read-write register that contains the number of cycles counted from the rtcclk

input described in Chapter 12. A timer interrupt is pending whenever mtime is greater than or

equal to the value in the mtimecmp register. The timer interrupt is reflected in the mtip bit of the

mip register described in Chapter 8.

On reset, mtime is cleared to zero. The mtimecmp registers are not reset.
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Chapter 10

Platform-Level Interrupt Controller

(PLIC)

This chapter describes the operation of the platform-level interrupt controller (PLIC) on the

FE310-G000. The PLIC complies with The RISC‑V Instruction Set Manual, Volume II: Privileged

Architecture, Version 1.10 and supports 51 interrupt sources with 7 priority levels.

10.1 Memory Map

The memory map for the FE310-G000 PLIC control registers is shown in Table 20. The PLIC

memory map has been designed to only require naturally aligned 32-bit memory accesses.
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PLIC Register Map

Address Width Attr. Description Notes

0x0C00_0000 Reserved

0x0C00_0004 4B RW source 1 priority

…

0x0C00_00CC 4B RW source 51 priority

See Section 10.3 for more

information

0x0C00_00D0

…

Reserved

0x0C00_1000 4B RO Start of pending array

…

0x0C00_1004 4B RO Last word of pending array

See Section 10.4 for more

information

0x0C00_1008

…

Reserved

0x0C00_2000 4B RW Start Hart 0 M-Mode inter-

rupt enables

…

0x0C00_2004 4B RW End Hart 0 M-Mode interrupt

enables

See Section 10.5 for more

information

0x0C00_2008

…

Reserved

0x0C20_0000 4B RW Hart 0 M-Mode priority

threshold

See Section 10.6 for more

information

0x0C20_0004 4B RW Hart 0 M-Mode claim/com-

plete

See Section 10.7 for more

information

0x0C20_0008

…

Reserved

0x1000_0000 End of PLIC Memory Map

Table 20: SiFive PLIC Register Map. Only naturally aligned 32-bit memory accesses are

required.

10.2 Interrupt Sources

The FE310-G000 has 51 interrupt sources. These are driven by various on-chip devices as

listed in Table 21. These signals are positive-level triggered.

In the PLIC, as specified in The RISC‑V Instruction Set Manual, Volume II: Privileged Architec-

ture, Version 1.10, Global Interrupt ID 0 is defined to mean "no interrupt."
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Source Start Source End Source

1 1 Watchdog

2 2 RTC

3 3 UART0

4 4 UART1

5 5 QSPI0

6 6 QSPI1

7 7 QSPI2

8 39 GPIO

40 51 PWM

Table 21: PLIC Interrupt Source Mapping

10.3 Interrupt Priorities

Each PLIC interrupt source can be assigned a priority by writing to its 32-bit memory-mapped

priority register. The FE310-G000 supports 7 levels of priority. A priority value of 0 is

reserved to mean "never interrupt" and effectively disables the interrupt. Priority 1 is the lowest

active priority, and priority 7 is the highest. Ties between global interrupts of the same priority

are broken by the Interrupt ID; interrupts with the lowest ID have the highest effective priority.

See Table 22 for the detailed register description.

PLIC Interrupt Priority Register (priority)

Base Address 0x0C00_0000 + 4 × Interrupt ID

Bits Field Name Attr. Rst. Description

[2:0] Priority RW X Sets the priority for a given global inter-

rupt.

[31:3] Reserved RO 0

Table 22: PLIC Interrupt Priority Registers

10.4 Interrupt Pending Bits

The current status of the interrupt source pending bits in the PLIC core can be read from the

pending array, organized as 2 words of 32 bits. The pending bit for interrupt ID is stored in bit

of word . As such, the FE310-G000 has 2 interrupt pending registers. Bit

0 of word 0, which represents the non-existent interrupt source 0, is hardwired to zero.

A pending bit in the PLIC core can be cleared by setting the associated enable bit then perform-

ing a claim as described in Section 10.7.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 42



PLIC Interrupt Pending Register 1 (pending1)

Base Address 0x0C00_1000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Pend-

ing

RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Pend-

ing

RO 0 Pending bit for global interrupt 1

2 Interrupt 2 Pend-

ing

RO 0 Pending bit for global interrupt 2

…

31 Interrupt 31 Pend-

ing

RO 0 Pending bit for global interrupt 31

Table 23: PLIC Interrupt Pending Register 1

PLIC Interrupt Pending Register 2 (pending2)

Base Address 0x0C00_1004

Bits Field Name Attr. Rst. Description

0 Interrupt 32 Pend-

ing

RO 0 Pending bit for global interrupt 32

…

19 Interrupt 51 Pend-

ing

RO 0 Pending bit for global interrupt 51

[31:20] Reserved WIRI X

Table 24: PLIC Interrupt Pending Register 2

10.5 Interrupt Enables

Each global interrupt can be enabled by setting the corresponding bit in the enables registers.

The enables registers are accessed as a contiguous array of 2 × 32-bit words, packed the

same way as the pending bits. Bit 0 of enable word 0 represents the non-existent interrupt ID 0

and is hardwired to 0.

Only 32-bit word accesses are supported by the enables array in SiFive RV32 systems.
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PLIC Interrupt Enable Register 1 (enable1) for Hart 0 M-Mode

Base Address 0x0C00_2000

Bits Field Name Attr. Rst. Description

0 Interrupt 0 Enable RO 0 Non-existent global interrupt 0 is hard-

wired to zero

1 Interrupt 1 Enable RW X Enable bit for global interrupt 1

2 Interrupt 2 Enable RW X Enable bit for global interrupt 2

…

31 Interrupt 31

Enable

RW X Enable bit for global interrupt 31

Table 25: PLIC Interrupt Enable Register 1 for Hart 0 M-Mode

PLIC Interrupt Enable Register 2 (enable2) for Hart 0 M-Mode

Base Address 0x0C00_2004

Bits Field Name Attr. Rst. Description

0 Interrupt 32

Enable

RW X Enable bit for global interrupt 32

…

19 Interrupt 51

Enable

RW X Enable bit for global interrupt 51

[31:20] Reserved RO 0

Table 26: PLIC Interrupt Enable Register 2 for Hart 0 M-Mode

10.6 Priority Thresholds

The FE310-G000 supports setting of an interrupt priority threshold via the threshold register.

The threshold is a WARL field, where the FE310-G000 supports a maximum threshold of 7.

The FE310-G000 masks all PLIC interrupts of a priority less than or equal to threshold. For

example, a threshold value of zero permits all interrupts with non-zero priority, whereas a

value of 7 masks all interrupts.

PLIC Interrupt Priority Threshold Register (threshold)

Base Address 0x0C20_0000

[2:0] Threshold RW X Sets the priority threshold

[31:3] Reserved RO 0

Table 27: PLIC Interrupt Threshold Register

10.7 Interrupt Claim Process

A FE310-G000 hart can perform an interrupt claim by reading the claim/complete register

(Table 28), which returns the ID of the highest-priority pending interrupt or zero if there is no
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pending interrupt. A successful claim also atomically clears the corresponding pending bit on

the interrupt source.

A FE310-G000 hart can perform a claim at any time, even if the MEIP bit in its mip (Table 16)

register is not set.

The claim operation is not affected by the setting of the priority threshold register.

10.8 Interrupt Completion

A FE310-G000 hart signals it has completed executing an interrupt handler by writing the inter-

rupt ID it received from the claim to the claim/complete register (Table 28). The PLIC does not

check whether the completion ID is the same as the last claim ID for that target. If the comple-

tion ID does not match an interrupt source that is currently enabled for the target, the completion

is silently ignored.
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PLIC Claim/Complete Register (claim)

Base Address 0x0C20_0004

[31:0] Interrupt Claim/

Complete for Hart

0 M-Mode

RW X A read of zero indicates that no inter-

rupts are pending. A non-zero read

contains the id of the highest pending

interrupt. A write to this register signals

completion of the interrupt id written.

Table 28: PLIC Interrupt Claim/Complete Register for Hart 0 M-Mode
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Chapter 11

One-Time Programmable Memory (OTP)

Peripheral

This chapter describes the operation of the One-Time Programmable Memory (OTP) Controller.

Device configuration and power-supply control is principally under software control. The con-

troller is reset to a state that allows memory-mapped reads, under the assumption that the con-

troller’s clock rate is between 1 MHz and 37 MHz. vrren is asserted during synchronous reset;

it is safe to read from OTP immediately after reset if reset is asserted for at least 150 us while

the controller’s clock is running.

Programmed-I/O reads and writes are sequenced entirely by software.

11.1 Memory Map

The memory map for the OTP control registers is shown in Table 29. The control-register mem-

ory map has been designed to only require naturally aligned 32-bit memory accesses. The OTP

controller also contains a read sequencer, which exposes the OTP’s contents as a read/exe-

cute-only memory-mapped device.
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Offset Name Description

0x00 otp_lock Programmed-I/O lock register

0x04 otp_ck OTP device clock signals

0x08 otp_oe OTP device output-enable signal

0x0C otp_sel OTP device chip-select signal

0x10 otp_we OTP device write-enable signal

0x14 otp_mr OTP device mode register

0x18 otp_mrr OTP read-voltage regulator control

0x1C otp_mpp OTP write-voltage charge pump control

0x20 otp_vrren OTP read-voltage enable

0x24 otp_vppen OTP write-voltage enable

0x28 otp_a OTP device address

0x2C otp_d OTP device data input

0x30 otp_q OTP device data output

0x34 otp_rsctrl OTP read sequencer control

11.2 Programmed-I/O lock register (otp_lock)

The otp_lock register supports synchronization between the read sequencer and the pro-

grammed-I/O interface. When the lock is clear, memory-mapped reads may proceed. When the

lock is set, memory-mapped reads do not access the OTP device, and instead return 0 immedi-

ately.

The otp_lock should be acquired before writing to any other control register. Software can

attempt to acquire the lock by storing 1 to otp_lock. If a memory-mapped read is in progress,

the lock will not be acquired, and will retain the value 0. Software can check if the lock was suc-

cessfully acquired by loading otp_lock and checking that it has the value 1.

After a programmed-I/O sequence, software should restore the previous value of any control

registers that were modified, then store 0 to otp_lock.

Listing 1 shows the synchronization code sequence.

Listing 1: Sequence to acquire and release otp_lock.

la t0, otp_lock

li t1, 1

loop: sw t1, (t0)

lw t2, (t0)

beqz t2, loop

#

# Programmed I/O sequence goes here.

#

sw x0, (t0)

Table 29: Register offsets within the OTP Controller memory map
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11.3 Programmed-I/O Sequencing

The programmed-I/O interface exposes the OTP device’s and power-supply’s control signals

directly to software. Software is responsible for respecting these signals' setup and hold times.

The OTP device requires that data be programmed one bit at a time and that the result be re-

read and retried according to a specific protocol.

See the OTP device and power supply data sheets for timing constraints, control signal descrip-

tions, and the programming algorithm.

11.4 Read sequencer control register (otp_rsctrl)

The read sequence consists of an address-setup phase, a read-pulse phase, and a read-access

phase. The duration of these phases, in terms of controller clock cycles, is set by a programma-

ble clock divider. The divider is controlled by the otp_rsctrl register, the layout of which is

shown in Table 30.

The number of clock cycles in each phase is given by , and the width of each phase may

be optionally scaled by 3. That is, the number of controller clock cycles in the address-setup

phase is given by the expression ; the number of clock cycles in the read-

pulse phase is given by ; and the read-access phase is

cycles long.

Software should acquire the otp_lock prior to modifying otp_rsctrl.

otp_rsctrl: OTP read sequencer control (otp_rsctrl)

Register Offset 0x34

Bits Field Name Attr. Rst. Description

[2:0] scale RW 0x1 OTP timescale

3 tas RW 0x0 Address setup time

4 trp RW 0x0 Read pulse time

5 tacc RW 0x0 Read access time

[31:6] Reserved

11.5 OTP Programming Warnings

Warning: Improper use of the One Time Programmable (OTP) memory may result in a non-

functional device and/or unreliable operation.

• OTP Memory must be programmed following the procedure outlined below exactly.

• OTP Memory is designed to be programmed or accessed only while coreClk is running

between 1 MHz and 37 MHz.

Table 30: otp_rsctrl: OTP read sequencer control
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• OTP Memory must be programmed only while the power supply voltages remain within

specification.

11.6 OTP Programming Procedure

1. LOCK the otp:

a. Write 0x1 to otp_lock

b. Check that 0x1 is read back from otp_lock.

c. Repeat this step until 0x1 is read successfully.

2. SET the programming voltages by writing the following values:

otp_mrr=0x4
otp_mpp=0x0
otp_vppen=0x0

3. WAIT 20 us for the programming voltages to stabilize.

4. ADDRESS the memory by setting otp_a.

5. WRITE one bit at a time:

a. Set only the bit you want to write high in otp_d

b. Bring otp_ck HIGH for 50 us

c. Bring otp_ck LOW. Note that this means only one bit of otp_d should

be high at any time.

6. VERIFY the written bits setting otp_mrr=0x9 for read margin.

7. SOAK any verification failures by repeating steps 2-5 using 400 us pulses.

8. REVERIFY the rewritten bits setting otp_mrr=0xF. Steps 7,8 may be repeated up to

10 times before failing the part.

9. UNLOCK the otp by writing 0x0 to otp_lock.
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Chapter 12

Always-On (AON) Domain

The FE310-G000 supports an always-on (AON) domain that includes real-time counter, a

watchdog timer, backup registers, low frequency clocking, and reset and power-management

circuitry for the rest of the system. Figure 5 shows an overview of the AON block.
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12.1 AON Power Source

The AON domain is continuously powered from an off-chip power source, either a regulated

power supply or a battery.

12.2 AON Clocking

The AON domain is clocked by the low-frequency clock, lfclk. The core domain’s Tilelink

peripheral bus uses the high-frequency coreClk. A HF-LF power-clock-domain crossing

(VCDC) bridges between the two power and clock domains.

An alternative low-frequency clock source can be provided via the aon_lfaltclksel and

aon_lfaltclk pads.

12.3 AON Reset Unit

An AON reset is the widest reset on the FE310-G000, and resets all state except for the JTAG

debug interface.

An AON reset can be triggered by an external active-low reset pin (erst_n), or expiration of the

watchdog timer (wdogrst).

These sources provide a short initial reset pulse frst, which is extended by a reset stretcher to

provide the LFROSC reset signal lfroscrst and a longer stretched internal reset, srst.

The lfroscrst signal is used to initialize the ring oscillator in the LFROSC. This oscillator pro-

vides lfclk, which is used to clock the AON. lfclk is also used as the clock input to mtime in

the CLINT.

The srst strobe is passed to a reset synchronizer clocked by lfclk to generate aonrst, an

asychronous-onset/synchronous-release reset signal used to reset most of the AON block.

The "mostly off" (MOFF) resets coreclkrst and corerst are generated by the Power Manage-

ment Unit (PMU) state machine after aonrst is deasserted.

12.4 External Reset Circuit

The FE310-G000 can be reset by pulling down on the external reset pin (erst_n), which has a

weak pullup. An external power-on reset circuit consisting of a resistor and capacitor can be

provided to generate a sufficiently long pulse to allow supply voltage to rise and then initiate the

reset stretcher.

The external reset circuit can include a diode as shown to quickly discharge the capacitor after

the supply is removed to rearm the external power-on reset circuit.
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A manual reset button can be connected in parallel with the capacitor.

12.5 Reset Cause

The cause of an AON reset is latched in the Reset Unit and can be read from the pmucause reg-

ister in the PMU, as described in Chapter 14.

12.6 Watchdog Timer (WDT)

The watchdog timer can be used to provide a watchdog reset function, or a periodic timer inter-

rupt. The watchdog is described in detail in Chapter 13.

12.7 Real-Time Clock (RTC)

The real-time clock maintains time for the system and can also be used to generate interrupts

for timed wakeup from sleep-mode or timer interrupts during normal operation. The Real-Time

Clock is described in detail in Chapter 15.

12.8 Backup Registers

The backup registers provide a place to store critical data during sleep. The FE310-G000 has

16 32-bit backup registers.

12.9 Power-Management Unit (PMU)

The power-management unit (PMU) sequences the system power supplies and reset signals

when transitioning into and out of sleep mode. The PMU also monitors AON signals for wakeup

conditions. The PMU is described in detail in Chapter 14.

12.10 AON Memory Map

Table 31 shows the memory map of the AON block.
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Offset Name Description

0x000 wdogcfg wdog Configuration

0x008 wdogcount Counter Register

0x010 wdogs Scaled value of Counter

0x018 wdogfeed Feed register

0x01C wdogkey Key Register

0x020 wdogcmp0 Comparator 0

0x040 rtccfg rtc Configuration

0x048 rtccountlo Low bits of Counter

0x04C rtccounthi High bits of Counter

0x050 rtcs Scaled value of Counter

0x060 rtccmp0 Comparator 0

0x070 lfrosccfg Ring Oscillator Configuration and Status

0x080 backup_0 Backup Register 0

0x084 backup_1 Backup Register 1

0x088 backup_2 Backup Register 2

0x08C backup_3 Backup Register 3

0x090 backup_4 Backup Register 4

0x094 backup_5 Backup Register 5

0x098 backup_6 Backup Register 6

0x09C backup_7 Backup Register 7

0x0A0 backup_8 Backup Register 8

0x0A4 backup_9 Backup Register 9

0x0A8 backup_10 Backup Register 10

0x0AC backup_11 Backup Register 11

0x0B0 backup_12 Backup Register 12

0x0B4 backup_13 Backup Register 13

0x0B8 backup_14 Backup Register 14

0x0BC backup_15 Backup Register 15

0x100 pmuwakeupi0 Wakeup program instruction 0

0x104 pmuwakeupi1 Wakeup program instruction 1

0x108 pmuwakeupi2 Wakeup program instruction 2

0x10C pmuwakeupi3 Wakeup program instruction 3

0x110 pmuwakeupi4 Wakeup program instruction 4

0x114 pmuwakeupi5 Wakeup program instruction 5

0x118 pmuwakeupi6 Wakeup program instruction 6

0x11C pmuwakeupi7 Wakeup program instruction 7

0x120 pmusleepi0 Sleep program instruction 0

0x124 pmusleepi1 Sleep program instruction 1

0x128 pmusleepi2 Sleep program instruction 2

0x12C pmusleepi3 Sleep program instruction 3

0x130 pmusleepi4 Sleep program instruction 4

Table 31: AON Domain Memory Map
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Offset Name Description

0x134 pmusleepi5 Sleep program instruction 5

0x138 pmusleepi6 Sleep program instruction 6

0x13C pmusleepi7 Sleep program instruction 7

0x140 pmuie PMU Interrupt Enables

0x144 pmucause PMU Wakeup Cause

0x148 pmusleep Initiate PMU Sleep Sequence

0x14C pmukey PMU Key. Reads as 1 when PMU is unlocked

Table 31: AON Domain Memory Map
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Chapter 13

Watchdog Timer (WDT)

The watchdog timer (WDT) is used to cause a full power-on reset if either hardware or software

errors cause the system to malfunction. The WDT can also be used as a programmable periodic

interrupt source if the watchdog functionality is not required. The WDT is implemented as an

upcounter in the Always-On domain that must be reset at regular intervals before the count

reaches a preset threshold, else it will trigger a full power-on reset. To prevent errant code from

resetting the counter, the WDT registers can only be updated by presenting a WDT key

sequence.
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Figure 6: Watchdog Timer

13.1 Watchdog Count Register (wdogcount)

The WDT is based around a 31-bit counter held in wdogcount[30:0]. The counter can be read

or written over the TileLink bus. Bit 31 of wdogcount returns a zero when read.
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The counter is incremented at a maximum rate determined by the watchdog clock selection.

Each cycle, the counter can be conditionally incremented depending on the existence of certain

conditions, including always incrementing or incrementing only when the processor is not

asleep.

The counter can also be reset to zero depending on certain conditions, such as a successful

write to wdogfeed or the counter matching the compare value.

13.2 Watchdog Clock Selection

The WDT unit clock, wdogclk, is driven by the low-frequency clock lfclk. It runs at approxi-

mately 32 kHz.

13.3 Watchdog Configuration Register (wdogcfg)

wdogcfg: wdog Configuration (wdogcfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[3:0] wdogscale RW X Counter scale value.

[7:4] Reserved

8 wdogrsten RW 0x0 Controls whether the comparator output can set

the wdogrst bit and hence cause a full reset.

9 wdogzerocmp RW X Reset counter to zero after match.

[11:10] Reserved

12 wdogenalways RW 0x0 Enable Always - run continuously

13 wdogcoreawake RW 0x0 Increment the watchdog counter if the processor is

not asleep

[27:14] Reserved

28 wdogip0 RW X Interrupt 0 Pending

[31:29] Reserved

The wdogen* bits control the conditions under which the watchdog counter wdogcount is incre-

mented. The wdogenalways bit, if set, means the watchdog counter always increments. The

wdogencoreawake bit, if set, means the watchdog counter increments if the processor core is

not asleep. The WDT uses the corerst signal from the wakeup sequencer to know when the

core is sleeping. The counter increments by one each cycle only if any of the enabled conditions

are true. The wdogen* bits are reset on AON reset.

The 4-bit wdogscale field scales the watchdog counter value before feeding it to the compara-

tor. The value in wdogscale is the bit position within the wdogcount register of the start of a

16-bit wdogs field. A value of 0 in wdogscale indicates no scaling, and wdogs would then be

equal to the low 16 bits of wdogcount. The maximum value of 15 in wdogscale corresponds to

Table 32: wdogcfg: wdog Configuration
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dividing the clock rate by , so for an input clock of 32.768 kHz, the LSB of wdogs will incre-

ment once per second.

The value of wdogs is memory-mapped and can be read as a single 16-bit value over the AON

TileLink bus.

The wdogzerocmp bit, if set, causes the watchdog counter wdogcount to be automatically reset

to zero one cycle after the wdogs counter value matches or exceeds the compare value in

wdogcmp. This feature can be used to implement periodic counter interrupts, where the period is

independent of interrupt service time.

The wdogrsten bit controls whether the comparator output can set the wdogrst bit and hence

cause a full reset.

The wdogip0 interrupt pending bit can be read or written.

13.4 Watchdog Compare Register (wdogcmp)

wdogcmp0: Comparator 0 (wdogcmp0)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

[15:0] wdogcmp0 RW X Comparator 0

[31:16] Reserved

The wdogcmp compare register is a 16-bit value against which the current wdogs value is com-

pared every cycle. The output of the comparator is asserted whenever the value of wdogs is

greater than or equal to wdogcmp.

13.5 Watchdog Key Register (wdogkey)

The wdogkey register has one bit of state. To prevent spurious reset of the WDT, all writes to

wdogcfg, wdogfeed, wdogcount, wdogcount, wdogcmp and wdogip0 must be preceded by an

unlock operation to the wdogkey register location, which sets wdogkey. The value 0x51F15E

must be written to the wdogkey register address to set the state bit before any write access to

any other watchdog register. The state bit is reset at AON reset, and after any write to a watch-

dog register.

Watchdog registers may be read without setting wdogkey.

Table 33: wdogcmp0: Comparator 0
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13.6 Watchdog Feed Address (wdogfeed)

After a successful key unlock, the watchdog can be fed using a write of the value 0xD09F00D to

the wdogfeed address, which will reset the wdogcount register to zero. The full watchdog feed

sequence is shown in Listing 2.

Listing 2: Sequence to reinitialize watchdog.

li t0, 0x51F15E  # Obtain key.

sw t0, wdogkey   # Unlock kennel.

li t0, 0xD09F00D # Get some food.

sw t0, wdogfeed  # Feed the watchdog.

Note there is no state associated with the wdogfeed address. Reads of this address return 0.

13.7 Watchdog Configuration

The WDT provides watchdog intervals of up to over 18 hours ( 65,535 seconds).

13.8 Watchdog Resets

If the watchdog is not fed before the wdogcount register exceeds the compare register zero

while the WDT is enabled, a reset pulse is sent to the reset circuitry, and the chip will go through

a complete power-on sequence.

The WDT will be initalized after a full reset, with the wdogrsten and wdogen* bits cleared.

13.9 Watchdog Interrupts (wdogip0)

The WDT can be configured to provide periodic counter interrupts by disabling watchdog resets

(wdogrsten=0) and enabling auto-zeroing of the count register when the comparator fires

(wdogzerocmp=1).

The sticky single-bit wdogip0 register captures the comparator output and holds it to provide an

interrupt pending signal. The wdogip register resides in the wdogcfg register, and can be read

and written over TileLink to clear down the interrupt.
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Chapter 14

Power-Management Unit (PMU)

The FE310-G000 power-management unit (PMU) is implemented within the AON domain and

sequences the system’s power supplies and reset signals during power-on reset and when tran-

sitioning the "mostly off" (MOFF) block into and out of sleep mode.
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14.1 PMU Overview
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Figure 7: FE310-G000 Power-Management Unit

The PMU is a synchronous unit clocked by the lfClk in the AON domain. The PMU handles

reset, wakeup, and sleep actions initiated by power-on reset, wakeup events, and sleep

requests. When the MOFF block is powered off, the PMU monitors AON signals to initiate the

wakeup sequence. When the MOFF block is powered on, the PMU awaits sleep requests from

the MOFF block, which initiate the sleep sequence. The PMU is based around a simple pro-

grammable microcode sequencer that steps through short programs to sequence output signals

that control the power supplies and reset signals to the clocks, core, and pads in the system.

14.2 Memory Map

The memory map for the PMU is shown in Table 34. The memory map has been designed to

only require naturally aligned 32-bit memory accesses.
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Offset Name Description

0x100 pmuwakeupi0 Wakeup program instruction 0

0x104 pmuwakeupi1 Wakeup program instruction 1

0x108 pmuwakeupi2 Wakeup program instruction 2

0x10C pmuwakeupi3 Wakeup program instruction 3

0x110 pmuwakeupi4 Wakeup program instruction 4

0x114 pmuwakeupi5 Wakeup program instruction 5

0x118 pmuwakeupi6 Wakeup program instruction 6

0x11C pmuwakeupi7 Wakeup program instruction 7

0x120 pmusleepi0 Sleep program instruction 0

0x124 pmusleepi1 Sleep program instruction 1

0x128 pmusleepi2 Sleep program instruction 2

0x12C pmusleepi3 Sleep program instruction 3

0x130 pmusleepi4 Sleep program instruction 4

0x134 pmusleepi5 Sleep program instruction 5

0x138 pmusleepi6 Sleep program instruction 6

0x13C pmusleepi7 Sleep program instruction 7

0x140 pmuie PMU Interrupt Enables

0x144 pmucause PMU Wakeup Cause

0x148 pmusleep Initiate PMU Sleep Sequence

0x14C pmukey PMU Key. Reads as 1 when PMU is unlocked

14.3 PMU Key Register (pmukey)

The pmukey register has one bit of state. To prevent spurious sleep or PMU program modifica-

tion, all writes to PMU registers must be preceded by an unlock operation to the pmukey register

location, which sets pmukey to 1. The value 0x51F15E must be written to the pmukey register

address to set the state bit before any write access to any other PMU register. The state bit is

reset at AON reset, and after any write to a PMU register.

PMU registers may be read without setting pmukey.

14.4 PMU Program

The PMU is implemented as a programmable sequencer to support customization and tuning of

the wakeup and sleep sequences. A wakeup or sleep program comprises eight instructions. An

instruction consists of a delay, encoded as a binary order of magnitude, and a new value for all

of the PMU output signals to assume after that delay. The PMU instruction format is shown in

Table 35. For example, the instruction 0x108 delays for clock cycles, then raises hfclkrst

and lowers all other output signals.

Table 34: PMU Memory Map
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The PMU output signals are registered and only toggle on PMU instruction boundaries. The out-

put registers are all asynchronously set to 1 by aonrst.

PMU Instruction Format (pmu(sleep/wakeup)iX)

Register Offset 0x100

Bits Field Name Attr. Rst. Description

[3:0] delay RW X delay multiplier

4 pmu_out_0_en RW X Drive PMU Output En 0 High

5 pmu_out_1_en RW X Drive PMU Output En 1 High

7 corerst RW X Core Reset

8 hfclkrst RW X High-Frequency Clock Reset

At power-on reset, the PMU program memories are reset to conservative defaults. Table 36

shows the default wakeup program, and Table 37 shows the default sleep program.

Program Instruction Value Meaning

0 0x1F0 Assert all resets and enable all power supplies

1 0x1F8 Idle cycles, then deassert hfclkrst

2 0x030 Deassert corerst and padrst

3-7 0x030 Repeats

Program Instruction Value Meaning

0 0x0F0 Assert corerst

1 0x1F0 Assert hfclkrst

2 0x1D0 Deassert pmu_out_1

3 0x1C0 Deassert pmu_out_0

4-7 0x1C0 Repeats

14.5 Initiate Sleep Sequence Register (pmusleep)

Writing any value to the pmusleep register initiates the sleep sequence stored in the sleep pro-

gram memory. The MOFF block will sleep until an event enabled in the pmuie register occurs.

14.6 Wakeup Signal Conditioning

The PMU can be woken by the external dwakeup signal, which is preconditioned by the signal

conditioning block.

Table 35: PMU Instruction Format

Table 36: Default PMU wakeup program

Table 37: Default PMU sleep program
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The dwakeup signal has a fixed deglitch circuit that requires the dwakeup signal remain asserted

for two AON clock edges before being accepted. The conditioning circuit also resynchronizes

the dwakeup signal to the AON lfclk.

14.7 PMU Interrupt Enables (pmuie) and Wakeup Cause

(pmucause)

The pmuie register indicates which events can wake the MOFF block from sleep.

The dwakeup bit indicates that a logic 0 on the dwakeup_n pin can rouse MOFF. The rtc bit

indicates that the RTC comparator can rouse MOFF.

pmuie: PMU Interrupt Enables (pmuie)

Register Offset 0x140

Bits Field Name Attr. Rst. Description

[3:0] pmuie RW 0x1 PMU Interrupt Enables

[31:4] Reserved

Following a wakeup, the pmucause register indicates which event caused the wakeup. The

value in the wakeupcause field corresponds to the bit position of the event in pmuie, e.g., a

value of 2 indicates dwakeup. The value 0 indicates a wakeup from reset. These causes are

shown in Table 40.

In the event of a wakeup from reset, the resetcause field indicates which reset source triggered

the wakeup. Table 41 lists the values the resetcause field may take. The value in resetcause

persists until the next reset.

pmucause: PMU Wakeup Cause (pmucause)

Register Offset 0x144

Bits Field Name Attr. Rst. Description

[31:0] pmucause RO X PMU Wakeup Cause

Index Meaning

0 Reset

1 RTC Wakup (rtc)

2 Digitial input wakeup (dwakeup)

Table 40: Wakeup cause values

Table 38: pmuie: PMU Interrupt Enables

Table 39: pmucause: PMU Wakeup Cause
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Index Meaning

1 External reset

2 Watchdog timer reset

Table 41: Reset cause values
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Chapter 15

Real-Time Clock (RTC)

The real-time clock (RTC) is located in the always-on domain, and is clocked by a selectable

low-frequency clock source. For best accuracy, the RTC should be driven by an external

32.768 kHz watch crystal oscillator, but to reduce system cost, can be driven by a factory-

trimmed on-chip oscillator.
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Figure 8: Real-Time Clock

15.1 RTC Count Registers (rtccounthi/rtccountlo)

The real-time counter is based around the rtccounthi/rtccountlo register pair, which incre-

ment at the low-frequency clock rate when the RTC is enabled. The rtccountlo register holds

the low 32 bits of the RTC, while rtccounthi holds the upper 16 bits of the RTC value. The

total ≥48-bit counter width ensures there will no counter rollover for over 270 years assuming a

32.768 kHz low-frequency real-time clock source. The counter registers can be read or written

over the TileLink bus.
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rtccounthi: High bits of Counter (rtccounthi)

Register Offset 0x4C

Bits Field Name Attr. Rst. Description

[31:0] rtccounthi RW X High bits of Counter

rtccountlo: Low bits of Counter (rtccountlo)

Register Offset 0x48

Bits Field Name Attr. Rst. Description

[31:0] rtccountlo RW X Low bits of Counter

15.2 RTC Configuration Register (rtccfg)

rtccfg: rtc Configuration (rtccfg)

Register Offset 0x40

Bits Field Name Attr. Rst. Description

[3:0] rtcscale RW X Counter scale value.

[11:4] Reserved

12 rtcenalways RW 0x0 Enable Always - run continuously

[27:13] Reserved

28 rtcip0 RW X Interrupt 0 Pending

[31:29] Reserved

The rtcenalways bit controls whether the RTC is enabled, and is reset on AON reset.

The 4-bit rtcscale field scales the real-time counter value before feeding to the real-time inter-

rupt comparator. The value in rtcscale is the bit position within the rtccountlo/rtccounthi

register pair of the start of a 32-bit field rtcs. A value of 0 in rtcscale indicates no scaling, and

rtcs would then be equal to rtclo. The maximum value of 15 in rtcscale corresponds to

dividing the clock rate by , so for an input clock of 32.768 kHz, the LSB of rtcs will incre-

ment once per second. The value of rtcs is memory-mapped and can be read as a single

32-bit register over the AON TileLink bus.

15.3 RTC Compare Register (rtccmp)

The rtccmp register holds a 32-bit value that is compared against rtcs, the scaled real-time

clock counter. If rtcs is greater than or equal to rtccmp, the rtccmpip interrupt pending bit is

set. The rtccmpip interrupt pending bit is read-only. The rtccmpip bit can be cleared down by

writing a value to rtccmp that is greater than rtcs.

Table 42: rtccounthi: High bits of Counter

Table 43: rtccountlo: Low bits of Counter

Table 44: rtccfg: rtc Configuration
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rtccmp0: Comparator 0 (rtccmp0)

Register Offset 0x60

Bits Field Name Attr. Rst. Description

[31:0] rtccmp0 RW X Comparator 0

Table 45: rtccmp0: Comparator 0
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Chapter 16

General Purpose Input/Output Controller

(GPIO)

This chapter describes the operation of the General Purpose Input/Output Controller (GPIO) on

the FE310-G000. The GPIO controller is a peripheral device mapped in the internal memory

map. It is responsible for low-level configuration of actual GPIO pads on the device (direction,

pull up-enable, and drive value ), as well as selecting between various sources of the controls

for these signals. The GPIO controller allows separate configuration of each of ngpio GPIO bits.

Figure 9 shows the control structure for each pin.

Atomic operations such as toggles are natively possible with the RISC-V 'A' extension.
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Figure 9: Structure of a single GPIO Pin with Control Registers. This structure is repeated for

each pin.

Copyright © 2016–2019, SiFive Inc. All rights reserved. 70



16.1 GPIO Instance in FE310-G000

FE310-G000 contains one GPIO instance. Its address and parameters are shown in Table 46.

Instance Number Address ngpio

0 0x10012000 32

Table 46: GPIO Instance

16.2 Memory Map

The memory map for the GPIO control registers is shown in Table 47. The GPIO memory map

has been designed to require only naturally-aligned 32-bit memory accesses. Each register is

ngpio bits wide.

Offset Name Description

0x00 input_val Pin value

0x04 input_en Pin input enable*

0x08 output_en Pin output enable*

0x0C output_val Output value

0x10 pue Internal pull-up enable*

0x14 ds Pin drive strength

0x18 rise_ie Rise interrupt enable

0x1C rise_ip Rise interrupt pending

0x20 fall_ie Fall interrupt enable

0x24 fall_ip Fall interrupt pending

0x28 high_ie High interrupt enable

0x2C high_ip High interrupt pending

0x30 low_ie Low interrupt enable

0x34 low_ip Low interrupt pending

0x40 out_xor Output XOR (invert)

16.3 Input / Output Values

The GPIO can be configured on a bitwise fashion to represent inputs and/or outputs, as set by

the input_en and output_en registers. Writing to the output_val register updates the bits

regardless of the tristate value. Reading the output_val register returns the written value.

Reading the input_val register returns the actual value of the pin gated by input_en.

Table 47: GPIO Peripheral Register Offsets. Only naturally aligned 32-bit memory accesses

are supported. Registers marked with an * are asynchronously reset to 0. All other registers are

synchronously reset to 0.
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16.4 Interrupts

A single interrupt bit can be generated for each GPIO bit. The interrupt can be driven by rising

or falling edges, or by level values, and interrupts can be enabled for each GPIO bit individually.

Inputs are synchronized before being sampled by the interrupt logic, so the input pulse width

must be long enough to be detected by the synchronization logic.

To enable an interrupt, set the corresponding bit in the rise_ie and/or fall_ie to 1. If the cor-

responding bit in rise_ip or fall_ip is set, an interrupt pin is raised.

Once the interrupt is pending, it will remain set until a 1 is written to the *_ip register at that bit.

The interrupt pins may be routed to the PLIC or directly to local interrupts.

16.5 Internal Pull-Ups

When configured as inputs, each pin has an internal pull-up which can be enabled by software.

At reset, all pins are set as inputs, and pull-ups are disabled.

16.6 Drive Strength

When configured as output, each pin has a software-controllable drive strength.

16.7 Output Inversion

When configured as an output (either software or IOF controlled), the software-writable out_xor

register is combined with the output to invert it.

16.8 HW I/O Functions (IOF)

Each GPIO pin can implement up to 2 HW-Driven functions (IOF) enabled with the iof_en reg-

ister. Which IOF is used is selected with the iof_sel register.

When a pin is set to perform an IOF, it is possible that the software registers port, output_en,

pullup, ds, input_en may not be used to control the pin directly. Rather, the pins may be con-

trolled by hardware driving the IOF. Which functionalities are controlled by the IOF and which

are controlled by the software registers are fixed in the hardware on a per-IOF basis. Those that

are not controlled by the hardware continue to be controlled by the software registers.

If there is no IOFx for a pin configured with IOFx, the pin reverts to full software control.
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Chapter 17

Universal Asynchronous Receiver/

Transmitter (UART)

This chapter describes the operation of the SiFive Universal Asynchronous Receiver/Transmit-

ter (UART).

17.1 UART Overview

The UART peripheral supports the following features:

• 8-N-1 and 8-N-2 formats: 8 data bits, no parity bit, 1 start bit, 1 or 2 stop bits

• 8-entry transmit and receive FIFO buffers with programmable watermark interrupts

• 16× Rx oversampling with 2/3 majority voting per bit

The UART peripheral does not support hardware flow control or other modem control signals, or

synchronous serial data transfers.

17.2 UART Instances in FE310-G000

FE310-G000 contains two UART instances. Their addresses and parameters are shown in

Table 48.

Instance Num-

ber

Address div_width div_init TX FIFO

Depth

RX FIFO

Depth

0 0x10013000 16 3 8 8

1 0x10023000 16 3 8 8

Table 48: UART Instances
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17.3 Memory Map

The memory map for the UART control registers is shown in Table 49. The UART memory map

has been designed to require only naturally aligned 32-bit memory accesses.

Offset Name Description

0x00 txdata Transmit data register

0x04 rxdata Receive data register

0x08 txctrl Transmit control register

0x0C rxctrl Receive control register

0x10 ie UART interrupt enable

0x14 ip UART interrupt pending

0x18 div Baud rate divisor

17.4 Transmit Data Register (txdata)

Writing to the txdata register enqueues the character contained in the data field to the transmit

FIFO if the FIFO is able to accept new entries. Reading from txdata returns the current value of

the full flag and zero in the data field. The full flag indicates whether the transmit FIFO is

able to accept new entries; when set, writes to data are ignored. A RISC‑V amoor.w instruction

can be used to both read the full status and attempt to enqueue data, with a non-zero return

value indicating the character was not accepted.

Transmit Data Register (txdata)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[7:0] data RW X Transmit data

[30:8] Reserved

31 full RO X Transmit FIFO full

17.5 Receive Data Register (rxdata)

Reading the rxdata register dequeues a character from the receive FIFO and returns the value

in the data field. The empty flag indicates if the receive FIFO was empty; when set, the data

field does not contain a valid character. Writes to rxdata are ignored.

Table 49: Register offsets within UART memory map

Table 50: Transmit Data Register
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Receive Data Register (rxdata)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RO X Receive FIFO empty

17.6 Transmit Control Register (txctrl)

The read-write txctrl register controls the operation of the transmit channel. The txen bit con-

trols whether the Tx channel is active. When cleared, transmission of Tx FIFO contents is sup-

pressed, and the txd pin is driven high.

The nstop field specifies the number of stop bits: 0 for one stop bit and 1 for two stop bits.

The txcnt field specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The txctrl register is reset to 0.

Transmit Control Register (txctrl)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

0 txen RW 0x0 Transmit enable

1 nstop RW 0x0 Number of stop bits

[15:2] Reserved

[18:16] txcnt RW 0x0 Transmit watermark level

[31:19] Reserved

17.7 Receive Control Register (rxctrl)

The read-write rxctrl register controls the operation of the receive channel. The rxen bit con-

trols whether the Rx channel is active. When cleared, the state of the rxd pin is ignored, and no

characters will be enqueued into the Rx FIFO.

The rxcnt field specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The rxctrl register is reset to 0. Characters are enqueued when a zero (low) start bit is seen.

Table 51: Receive Data Register

Table 52: Transmit Control Register
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Receive Control Register (rxctrl)

Register Offset 0xC

Bits Field Name Attr. Rst. Description

0 rxen RW 0x0 Receive enable

[15:1] Reserved

[18:16] rxcnt RW 0x0 Receive watermark level

[31:19] Reserved

17.8 Interrupt Registers (ip and ie)

The ip register is a read-only register indicating the pending interrupt conditions, and the read-

write ie register controls which UART interrupts are enabled. ie is reset to 0.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txcnt field of the txctrl register. The pending bit is

cleared when sufficient entries have been enqueued to exceed the watermark.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxcnt field of the rxctrl register. The pending bit is

cleared when sufficient entries have been dequeued to fall below the watermark.

UART Interrupt Enable Register (ie)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark interrupt enable

1 rxwm RW 0x0 Receive watermark interrupt enable

[31:2] Reserved

UART Interrupt Pending Register (ip)

Register Offset 0x14

Bits Field Name Attr. Rst. Description

0 txwm RO X Transmit watermark interrupt pending

1 rxwm RO X Receive watermark interrupt pending

[31:2] Reserved

17.9 Baud Rate Divisor Register (div)

The read-write, div_width-bit div register specifies the divisor used by baud rate generation

for both Tx and Rx channels. The relationship between the input clock and baud rate is given by

the following formula:

Table 53: Receive Control Register

Table 54: UART Interrupt Enable Register

Table 55: UART Interrupt Pending Register
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The input clock is the bus clock tlclk. The reset value of the register is set to div_init, which

is tuned to provide a 115200 baud output out of reset given the expected frequency of tlclk.

Table 56 shows divisors for some common core clock rates and commonly used baud rates.

Note that the table shows the divide ratios, which are one greater than the value stored in the

div register.

tlclk (MHz) Target Baud (Hz) Divisor Actual Baud (Hz) Error (%)

2 31250 64 31250 0

2 115200 17 117647 2.1

16 31250 512 31250 0

16 115200 139 115107 0.08

16 250000 64 250000 0

200 31250 6400 31250 0

200 115200 1736 115207 0.0064

200 250000 800 250000 0

200 1843200 109 1834862 0.45

384 31250 12288 31250 0

384 115200 3333 115211 0.01

384 250000 1536 250000 0

384 1843200 208 1846153 0.16

Table 56: Common baud rates (MIDI=31250, DMX=250000) and required

divide values to achieve them with given bus clock frequencies. The divide val-

ues are one greater than the value stored in the div register.

The receive channel is sampled at 16× the baud rate, and a majority vote over 3 neighboring

bits is used to determine the received value. For this reason, the divisor must be ≥16 for a

receive channel.

Baud Rate Divisor Register (div)

Register Offset 0x18

Bits Field

Name

Attr. Rst. Description

[15:0] div RW X Baud rate divisor. div_width bits wide, and the reset

value is div_init.

[31:16] Reserved

Table 57: Baud Rate Divisor Register
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Chapter 18

Serial Peripheral Interface (SPI)

This chapter describes the operation of the SiFive Serial Peripheral Interface (SPI) controller.

18.1 SPI Overview

The SPI controller supports master-only operation over the single-lane, dual-lane, and quad-

lane protocols. The baseline controller provides a FIFO-based interface for performing pro-

grammed I/O. Software initiates a transfer by enqueuing a frame in the transmit FIFO; when the

transfer completes, the slave response is placed in the receive FIFO.

In addition, a SPI controller can implement a SPI flash read sequencer, which exposes the

external SPI flash contents as a read/execute-only memory-mapped device. Such controllers

are reset to a state that allows memory-mapped reads, under the assumption that the input

clock rate is less than 100 MHz and the external SPI flash device supports the common Win-

bond/Numonyx serial read (0x03) command. Sequential accesses are automatically combined

into one long read command for higher performance.

The fctrl register controls switching between the memory-mapped and programmed-I/O

modes, if applicable. While in programmed-I/O mode, memory-mapped reads do not access the

external SPI flash device and instead return 0 immediately. Hardware interlocks ensure that the

current transfer completes before mode transitions and control register updates take effect.

18.2 SPI Instances in FE310-G000

FE310-G000 contains three SPI instances. Their addresses and parameters are shown in Table

58.
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Instance Flash Controller Address cs_width div_width

QSPI 0 Control Y 0x10014000 1 12

QSPI 1 N 0x10024000 4 12

QSPI 2 N 0x10034000 1 12

Table 58: SPI Instances

18.3 Memory Map

The memory map for the SPI control registers is shown in Table 59. The SPI memory map has

been designed to require only naturally-aligned 32-bit memory accesses.
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Offset Name Description

0x00 sckdiv Serial clock divisor

0x04 sckmode Serial clock mode

0x08 Reserved

0x0C Reserved

0x10 csid Chip select ID

0x14 csdef Chip select default

0x18 csmode Chip select mode

0x1C Reserved

0x20 Reserved

0x24 Reserved

0x28 delay0 Delay control 0

0x2C delay1 Delay control 1

0x30 Reserved

0x34 Reserved

0x38 Reserved

0x3C Reserved

0x40 fmt Frame format

0x44 Reserved

0x48 txdata Tx FIFO Data

0x4C rxdata Rx FIFO data

0x50 txmark Tx FIFO watermark

0x54 rxmark Rx FIFO watermark

0x58 Reserved

0x5C Reserved

0x60 fctrl SPI flash interface control*

0x64 ffmt SPI flash instruction format*

0x68 Reserved

0x6C Reserved

0x70 ie SPI interrupt enable

0x74 ip SPI interrupt pending

18.4 Serial Clock Divisor Register (sckdiv)

The sckdiv is a div_width-bit register that specifies the divisor used for generating the serial

clock (SCK). The relationship between the input clock and SCK is given by the following for-

mula:

Table 59: Register offsets within the SPI memory map. Registers marked * are present only on

controllers with the direct-map flash interface.
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The input clock is the bus clock tlclk. The reset value of the div field is 0x3.

Serial Clock Divisor Register (sckdiv)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[11:0] div RW 0x3 Divisor for serial clock. div_width bits wide.

[31:12] Reserved

18.5 Serial Clock Mode Register (sckmode)

The sckmode register defines the serial clock polarity and phase. Table 62 and Table 63

describe the behavior of the pol and pha fields, respectively. The reset value of sckmode is 0.

Serial Clock Mode Register (sckmode)

Register Offset 0x4

Bits Field Name Attr. Rst. Description

0 pha RW 0x0 Serial clock phase

1 pol RW 0x0 Serial clock polarity

[31:2] Reserved

Value Description

0 Inactive state of SCK is logical 0

1 Inactive state of SCK is logical 1

Value Description

0 Data is sampled on the leading edge of SCK and shifted on the trailing edge of SCK

1 Data is shifted on the leading edge of SCK and sampled on the trailing edge of SCK

18.6 Chip Select ID Register (csid)

The csid is a -bit register that encodes the index of the CS pin to be toggled

by hardware chip select control. The reset value is 0x0.

Table 60: Serial Clock Divisor Register

Table 61: Serial Clock Mode Register

Table 62: Serial Clock Polarity

Table 63: Serial Clock Phase
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Chip Select ID Register (csid)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[31:0] csid RW 0x0 Chip select ID. bits wide.

18.7 Chip Select Default Register (csdef)

The csdef register is a cs_width-bit register that specifies the inactive state (polarity) of the CS

pins. The reset value is high for all implemented CS pins.

Chip Select Default Register (csdef)

Register Offset 0x14

Bits Field

Name

Attr. Rst. Description

[31:0] csdef RW 0x1 Chip select default value. cs_width bits wide, reset to

all-1s.

18.8 Chip Select Mode Register (csmode)

The csmode register defines the hardware chip select behavior as described in Table 66. The

reset value is 0x0 (AUTO). In HOLD mode, the CS pin is deasserted only when one of the fol-

lowing conditions occur:

• A different value is written to csmode or csid.

• A write to csdef changes the state of the selected pin.

• Direct-mapped flash mode is enabled.

Chip Select Mode Register (csmode)

Register Offset 0x18

Bits Field Name Attr. Rst. Description

[1:0] mode RW 0x0 Chip select mode

[31:2] Reserved

Value Name Description

0 AUTO Assert/deassert CS at the beginning/end of each frame

2 HOLD Keep CS continuously asserted after the initial frame

3 OFF Disable hardware control of the CS pin

Table 64: Chip Select ID Register

Table 65: Chip Select Default Register

Table 66: Chip Select Mode Register

Table 67: Chip Select Modes
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18.9 Delay Control Registers (delay0 and delay1)

The delay0 and delay1 registers allow for the insertion of arbitrary delays specified in units of

one SCK period.

The cssck field specifies the delay between the assertion of CS and the first leading edge of

SCK. When sckmode.pha = 0, an additional half-period delay is implicit. The reset value is 0x1.

The sckcs field specifies the delay between the last trailing edge of SCK and the deassertion of

CS. When sckmode.pha = 1, an additional half-period delay is implicit. The reset value is 0x1.

The intercs field specifies the minimum CS inactive time between deassertion and assertion.

The reset value is 0x1.

The interxfr field specifies the delay between two consecutive frames without deasserting

CS. This is applicable only when sckmode is HOLD or OFF. The reset value is 0x0.

Delay Control Register 0 (delay0)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[7:0] cssck RW 0x1 CS to SCK Delay

[15:8] Reserved

[23:16] sckcs RW 0x1 SCK to CS Delay

[31:24] Reserved

Delay Control Register 1 (delay1)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

[7:0] intercs RW 0x1 Minimum CS inactive time

[15:8] Reserved

[23:16] interxfr RW 0x0 Maximum interframe delay

[31:24] Reserved

18.10 Frame Format Register (fmt)

The fmt register defines the frame format for transfers initiated through the programmed-I/O

(FIFO) interface. Table 71, Table 72, and Table 73 describe the proto, endian, and dir fields,

respectively. The len field defines the number of bits per frame, where the allowed range is 0 to

8 inclusive.

Table 68: Delay Control Register 0

Table 69: Delay Control Register 1
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For flash-enabled SPI controllers, the reset value is 0x0008_0008, corresponding to proto =

single, dir = Tx, endian = MSB, and len = 8. For non-flash-enabled SPI controllers, the reset

value is 0x0008_0000, corresponding to proto = single, dir = Rx, endian = MSB, and len = 8.

Frame Format Register (fmt)

Register Offset 0x40

Bits Field

Name

Attr. Rst. Description

[1:0] proto RW 0x0 SPI protocol

2 endian RW 0x0 SPI endianness

3 dir RW X SPI I/O direction. This is reset to 1 for flash-enabled SPI

controllers, 0 otherwise.

[15:4] Reserved

[19:16] len RW 0x8 Number of bits per frame

[31:20] Reserved

Value Description Data Pins

0 Single DQ0 (MOSI), DQ1 (MISO)

1 Dual DQ0, DQ1

2 Quad DQ0, DQ1, DQ2, DQ3

Value Description

0 Transmit most-significant bit (MSB) first

1 Transmit least-significant bit (LSB) first

Value Description

0 Rx: For dual and quad protocols, the DQ pins are tri-stated. For the single protocol,

the DQ0 pin is driven with the transmit data as normal.

1 Tx: The receive FIFO is not populated.

18.11 Transmit Data Register (txdata)

Writing to the txdata register loads the transmit FIFO with the value contained in the data field.

For fmt.len < 8, values should be left-aligned when fmt.endian = MSB and right-aligned

when fmt.endian = LSB.

Table 70: Frame Format Register

Table 71: SPI Protocol. Unused DQ pins are tri-stated.

Table 72: SPI Endianness

Table 73: SPI I/O Direction
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The full flag indicates whether the transmit FIFO is ready to accept new entries; when set,

writes to txdata are ignored. The data field returns 0x0 when read.

Transmit Data Register (txdata)

Register Offset 0x48

Bits Field Name Attr. Rst. Description

[7:0] data RW 0x0 Transmit data

[30:8] Reserved

31 full RO X FIFO full flag

18.12 Receive Data Register (rxdata)

Reading the rxdata register dequeues a frame from the receive FIFO. For fmt.len < 8, values

are left-aligned when fmt.endian = MSB and right-aligned when fmt.endian = LSB.

The empty flag indicates whether the receive FIFO contains new entries to be read; when set,

the data field does not contain a valid frame. Writes to rxdata are ignored.

Receive Data Register (rxdata)

Register Offset 0x4C

Bits Field Name Attr. Rst. Description

[7:0] data RO X Received data

[30:8] Reserved

31 empty RW X FIFO empty flag

18.13 Transmit Watermark Register (txmark)

The txmark register specifies the threshold at which the Tx FIFO watermark interrupt triggers.

The reset value is 1 for flash-enabled SPI controllers, and 0 for non-flash-enabled SPI con-

trollers.

Transmit Watermark Register (txmark)

Register Offset 0x50

Bits Field

Name

Attr. Rst. Description

[2:0] txmark RW X Transmit watermark. The reset value is 1 for flash-enabled

controllers, 0 otherwise.

[31:3] Reserved

Table 74: Transmit Data Register

Table 75: Receive Data Register

Table 76: Transmit Watermark Register
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18.14 Receive Watermark Register (rxmark)

The rxmark register specifies the threshold at which the Rx FIFO watermark interrupt triggers.

The reset value is 0x0.

Receive Watermark Register (rxmark)

Register Offset 0x54

Bits Field Name Attr. Rst. Description

[2:0] rxmark RW 0x0 Receive watermark

[31:3] Reserved

18.15 SPI Interrupt Registers (ie and ip)

The ie register controls which SPI interrupts are enabled, and ip is a read-only register indicat-

ing the pending interrupt conditions. ie is reset to zero. See Table 78.

The txwm condition becomes raised when the number of entries in the transmit FIFO is strictly

less than the count specified by the txmark register. The pending bit is cleared when sufficient

entries have been enqueued to exceed the watermark. See Table 79.

The rxwm condition becomes raised when the number of entries in the receive FIFO is strictly

greater than the count specified by the rxmark register. The pending bit is cleared when suffi-

cient entries have been dequeued to fall below the watermark. See Table 79.

SPI Interrupt Enable Register (ie)

Register Offset 0x70

Bits Field Name Attr. Rst. Description

0 txwm RW 0x0 Transmit watermark enable

1 rxwm RW 0x0 Receive watermark enable

[31:2] Reserved

SPI Watermark Interrupt Pending Register (ip)

Register Offset 0x74

Bits Field Name Attr. Rst. Description

0 txwm RO 0x0 Transmit watermark pending

1 rxwm RO 0x0 Receive watermark pending

[31:2] Reserved

Table 77: Receive Watermark Register

Table 78: SPI Interrupt Enable Register

Table 79: SPI Watermark Interrupt Pending Register
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18.16 SPI Flash Interface Control Register (fctrl)

When the en bit of the fctrl register is set, the controller enters direct memory-mapped SPI

flash mode. Accesses to the direct-mapped memory region causes the controller to automati-

cally sequence SPI flash reads in hardware. The reset value is 0x1. See Table 80.

SPI Flash Interface Control Register (fctrl)

Register Offset 0x60

Bits Field Name Attr. Rst. Description

0 en RW 0x1 SPI Flash Mode Select

[31:1] Reserved

18.17 SPI Flash Instruction Format Register (ffmt)

The ffmt register defines the format of the SPI flash read instruction issued by the controller

when the direct-mapped memory region is accessed while in SPI flash mode.

An instruction consists of a command byte followed by a variable number of address bytes,

dummy cycles (padding), and data bytes. Table 81 describes the function and reset value of

each field.

SPI Flash Instruction Format Register (ffmt)

Register Offset 0x64

Bits Field Name Attr. Rst. Description

0 cmd_en RW 0x1 Enable sending of command

[3:1] addr_len RW 0x3 Number of address bytes (0 to 4)

[7:4] pad_cnt RW 0x0 Number of dummy cycles

[9:8] cmd_proto RW 0x0 Protocol for transmitting command

[11:10] addr_proto RW 0x0 Protocol for transmitting address and padding

[13:12] data_proto RW 0x0 Protocol for receiving data bytes

[15:14] Reserved

[23:16] cmd_code RW 0x3 Value of command byte

[31:24] pad_code RW 0x0 First 8 bits to transmit during dummy cycles

Table 80: SPI Flash Interface Control Register

Table 81: SPI Flash Instruction Format Register
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Chapter 19

Pulse Width Modulator (PWM)

This chapter describes the operation of the Pulse-Width Modulation peripheral (PWM).

19.1 PWM Overview

Figure 10 shows an overview of the PWM peripheral. The default configuration described here

has four independent PWM comparators (pwmcmp0–pwmcmp3), but each PWM Peripheral is

parameterized by the number of comparators it has (ncmp). The PWM block can generate multi-

ple types of waveforms on output pins (pwm gpio) and can also be used to generate several

forms of internal timer interrupt. The comparator results are captured in the pwmcmp ip flops

and then fed to the PLIC as potential interrupt sources. The pwmcmp ip outputs are further

processed by an output ganging stage before being fed to the GPIOs.

PWM instances can support comparator precisions (cmpwidth) up to 16 bits, with the example

described here having the full 16 bits. To support clock scaling, the pwmcount register is 15 bits

wider than the comparator precision cmpwidth.
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Figure 10: PWM Peripheral

19.2 PWM Instances in FE310-G000

FE310-G000 contains three PWM instances. Their addresses and parameters are shown in

Table 82.

Instance Number Address ncmp cmpwidth

0 0x10015000 4 8

1 0x10025000 4 16

2 0x10035000 4 16

Table 82: PWM Instances

19.3 PWM Memory Map

The memory map for the PWM peripheral is shown in Table 83.
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Offset Name Description

0x00 pwmcfg PWM configuration register

0x04 Reserved

0x08 pwmcount PWM count register

0x0C Reserved

0x10 pwms Scaled PWM count register

0x14 Reserved

0x18 Reserved

0x1C Reserved

0x20 pwmcmp0 PWM 0 compare register

0x24 pwmcmp1 PWM 1 compare register

0x28 pwmcmp2 PWM 2 compare register

0x2C pwmcmp3 PWM 3 compare register

19.4 PWM Count Register (pwmcount)

The PWM unit is based around a counter held in pwmcount. The counter can be read or written

over the TileLink bus. The pwmcount register is bits wide. For example, for

cmpwidth of 16 bits, the counter is held in pwmcount[30:0], and bit 31 of pwmcount returns a

zero when read.

When used for PWM generation, the counter is normally incremented at a fixed rate then reset

to zero at the end of every PWM cycle. The PWM counter is either reset when the scaled

counter pwms reaches the value in pwmcmp0, or is simply allowed to wrap around to zero.

The counter can also be used in one-shot mode, where it disables counting after the first reset.

PWM Count Register (pwmcount)

Register Offset 0x8

Bits Field Name Attr. Rst. Description

[30:0] pwmcount RW X PWM count register. cmpwidth + 15 bits wide.

31 Reserved

Table 83: SiFive PWM memory map, offsets relative to PWM peripheral base address

Table 84: PWM Count Register
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19.5 PWM Configuration Register (pwmcfg)

PWM Configuration Register (pwmcfg)

Register Offset 0x0

Bits Field Name Attr. Rst. Description

[3:0] pwmscale RW X PWM Counter scale

[7:4] Reserved

8 pwmsticky RW X PWM Sticky - disallow clearing pwmcmp ip bits

9 pwmzerocmp RW X PWM Zero - counter resets to zero after match

10 pwmdeglitch RW X PWM Deglitch - latch pwmcmp ip within same

cycle

11 Reserved

12 pwmenalways RW 0x0 PWM enable always - run continuously

13 pwmenoneshot RW 0x0 PWM enable one shot - run one cycle

[15:14] Reserved

16 pwmcmp0center RW X PWM0 Compare Center

17 pwmcmp1center RW X PWM1 Compare Center

18 pwmcmp2center RW X PWM2 Compare Center

19 pwmcmp3center RW X PWM3 Compare Center

[23:20] Reserved

24 pwmcmp0gang RW X PWM0/PWM1 Compare Gang

25 pwmcmp1gang RW X PWM1/PWM2 Compare Gang

26 pwmcmp2gang RW X PWM2/PWM3 Compare Gang

27 pwmcmp3gang RW X PWM3/PWM0 Compare Gang

28 pwmcmp0ip RW X PWM0 Interrupt Pending

29 pwmcmp1ip RW X PWM1 Interrupt Pending

30 pwmcmp2ip RW X PWM2 Interrupt Pending

31 pwmcmp3ip RW X PWM3 Interrupt Pending

The pwmcfg register contains various control and status information regarding the PWM periph-

eral, as shown in Table 85.

The pwmen* bits control the conditions under which the PWM counter pwmcount is incremented.

The counter increments by one each cycle only if any of the enabled conditions are true.

If the pwmenalways bit is set, the PWM counter increments continuously. When pwmenoneshot

is set, the counter can increment but pwmenoneshot is reset to zero once the counter resets,

disabling further counting (unless pwmenalways is set). The pwmenoneshot bit provides a way

for software to generate a single PWM cycle then stop. Software can set the pwmenoneshot

again at any time to replay the one-shot waveform. The pwmen* bits are reset at wakeup reset,

which disables the PWM counter and saves power.

Table 85: PWM Configuration Register

Copyright © 2016–2019, SiFive Inc. All rights reserved. 91



The 4-bit pwmscale field scales the PWM counter value before feeding it to the PWM compara-

tors. The value in pwmscale is the bit position within the pwmcount register of the start of a

cmpwidth-bit pwms field. A value of 0 in pwmscale indicates no scaling, and pwms would then be

equal to the low cmpwidth bits of pwmcount. The maximum value of 15 in pwmscale corre-

sponds to dividing the clock rate by 215, so for an input bus clock of 16 MHz, the LSB of pwms

will increment at 488.3 Hz.

The pwmzerocmp bit, if set, causes the PWM counter pwmcount to be automatically reset to zero

one cycle after the pwms counter value matches the compare value in pwmcmp0. This is normally

used to set the period of the PWM cycle. This feature can also be used to implement periodic

counter interrupts, where the period is independent of interrupt service time.

19.6 Scaled PWM Count Register (pwms)

The Scaled PWM Count Register pwms reports the cmpwidth-bit portion of pwmcount which

starts at pwmscale, and is what is used for comparison against the pwmcmp registers.

Scaled PWM Count Register (pwms)

Register Offset 0x10

Bits Field Name Attr. Rst. Description

[15:0] pwms RW X Scaled PWM count register. cmpwidth bits wide.

[31:16] Reserved

19.7 PWM Compare Registers (pwmcmp0–pwmcmp3)

PWM 0 Compare Register (pwmcmp0)

Register Offset 0x20

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp0 RW X PWM 0 Compare Value

[31:16] Reserved

PWM 1 Compare Register (pwmcmp1)

Register Offset 0x24

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp1 RW X PWM 1 Compare Value

[31:16] Reserved

Table 86: Scaled PWM Count Register

Table 87: PWM 0 Compare Register

Table 88: PWM 1 Compare Register
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PWM 2 Compare Register (pwmcmp2)

Register Offset 0x28

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp2 RW X PWM 2 Compare Value

[31:16] Reserved

PWM 3 Compare Register (pwmcmp3)

Register Offset 0x2C

Bits Field Name Attr. Rst. Description

[15:0] pwmcmp3 RW X PWM 3 Compare Value

[31:16] Reserved

The primary use of the ncmp PWM compare registers is to define the edges of the PWM wave-

forms within the PWM cycle.

Each compare register is a cmpwdith-bit value against which the current pwms value is com-

pared every cycle. The output of each comparator is high whenever the value of pwms is greater

than or equal to the corresponding pwmcmp .

If the pwmzerocomp bit is set, when pwms reaches or exceeds pwmcmp0, pwmcount is cleared to

zero and the current PWM cycle is completed. Otherwise, the counter is allowed to wrap

around.

19.8 Deglitch and Sticky Circuitry

To avoid glitches in the PWM waveforms when changing pwmcmp register values, the

pwmdeglitch bit in pwmcfg can be set to capture any high output of a PWM comparator in a

sticky bit (pwmcmp ip for comparator ) and prevent the output falling again within the same

PWM cycle. The pwmcmp ip bits are only allowed to change at the start of the next PWM cycle.

Note

The pwmcmp0ip bit will only be high for one cycle when pwmdeglitch and pwmzerocmp are

set where pwmcmp0 is used to define the PWM cycle, but can be used as a regular PWM

edge otherwise.

If pwmdeglitch is set, but pwmzerocmp is clear, the deglitch circuit is still operational but is now

triggered when pwms contains all 1s and will cause a carry out of the high bit of the pwms incre-

menter just before the counter wraps to zero.

Table 89: PWM 2 Compare Register

Table 90: PWM 3 Compare Register
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The pwmsticky bit disallows the pwmcmp ip registers from clearing if they are already set and

is used to ensure interrupts are seen from the pwmcmp ip bits.

19.9 Generating Left- or Right-Aligned PWM Waveforms

Figure 11: Basic right-aligned PWM waveforms. All possible base waveforms are shown for a

7-clock PWM cycle (pwmcmp0=6). The waveforms show the single-cycle delay caused by regis-

tering the comparator outputs in the pwmcmp ip bits. The signals can be inverted at the GPIOs

to generate left-aligned waveforms.

Figure 11 shows the generation of various base PWM waveforms. The figure illustrates that if

pwmcmp0 is set to less than the maximum count value (6 in this case), it is possible to generate

both 100% (pwmcmp 0) and 0% (pwmcmp pwmcmp0) right-aligned duty cycles using the

other comparators. The pwmcmp ip bits are routed to the GPIO pads, where they can be

optionally and individually inverted, thereby creating left-aligned PWM waveforms (high at

beginning of cycle).

19.10 Generating Center-Aligned (Phase-Correct) PWM

Waveforms

The simple PWM waveforms in Figure 11 shift the phase of the waveform along with the duty

cycle. A per-comparator pwmcmp center bit in pwmcfg allows a single PWM comparator to

generate a center-aligned symmetric duty-cycle as shown in Figure 12. The pwmcmp center bit

changes the comparator to compare with the bitwise inverted pwms value whenever the MSB of

pwms is high.
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This technique provides symmetric PWM waveforms but only when the PWM cycle is at the

largest supported size. At a 16 MHz bus clock rate with 16-bit precision, this limits the fastest

PWM cycle to 244 Hz, or 62.5 kHz with 8-bit precision. Higher bus clock rates allow proportion-

ally faster PWM cycles using the single comparator center-aligned waveforms. This technique

also reduces the effective width resolution by a factor of 2.

pwms pwmscenter

000 000

001 001

010 010

011 011

100 011

101 010

110 001

111 000

Figure 12: Center-aligned PWM waveforms generated from one comparator. All possible

waveforms are shown for a 3-bit PWM precision. The signals can be inverted at the GPIOs to

generate opposite-phase waveforms.

When a comparator is operating in center mode, the deglitch circuit allows one 0-to-1 transition

during the first half of the cycle and one 1-to-0 transition during the second half of the cycle.

19.11 Generating Arbitrary PWM Waveforms using Ganging

A comparator can be ganged together with its next-highest-numbered neighbor to generate arbi-

trary PWM pulses. When the pwmcmp gang bit is set, comparator fires and raises its

pwm gpio signal. When comparator (or pwmcmp0 for pwmcmp3) fires, the pwm gpio out-

put is reset to zero.

Table 91: Illustration of how count value is inverted before presentation to comparator when

pwmcmp center is selected, using a 3-bit pwms value.
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19.12 Generating One-Shot Waveforms

The PWM peripheral can be used to generate precisely timed one-shot pulses by first initializing

the other parts of pwmcfg then writing a 1 to the pwmenoneshot bit. The counter will run for one

PWM cycle, then once a reset condition occurs, the pwmenoneshot bit is reset in hardware to

prevent a second cycle.

19.13 PWM Interrupts

The PWM can be configured to provide periodic counter interrupts by enabling auto-zeroing of

the count register when a comparator 0 fires (pwmzerocmp=1). The pwmsticky bit should also

be set to ensure interrupts are not forgotten while waiting to run a handler.

The interrupt pending bits pwmcmp ip can be cleared down using writes to the pwmcfg register.

The PWM peripheral can also be used as a regular timer with no counter reset (pwmzerocmp=0),

where the comparators are now used to provide timer interrupts.
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Chapter 20

Debug

This chapter describes the operation of SiFive debug hardware, which follows The RISC‑V

Debug Specification 0.11. Currently only interactive debug and hardware breakpoints are sup-

ported.

20.1 Debug CSRs

This section describes the per-hart trace and debug registers (TDRs), which are mapped into

the CSR space as follows:

CSR Name Description Allowed Access Modes

tselect Trace and debug register select D, M

tdata1 First field of selected TDR D, M

tdata2 Second field of selected TDR D, M

tdata3 Third field of selected TDR D, M

dcsr Debug control and status register D

dpc Debug PC D

dscratch Debug scratch register D

Table 92: Debug Control and Status Registers

The dcsr, dpc, and dscratch registers are only accessible in debug mode, while the tselect

and tdata1-3 registers are accessible from either debug mode or machine mode.

20.1.1 Trace and Debug Register Select (tselect)

To support a large and variable number of TDRs for tracing and breakpoints, they are accessed

through one level of indirection where the tselect register selects which bank of three

tdata1-3 registers are accessed via the other three addresses.

The tselect register has the format shown below:
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Trace and Debug Select Register

CSR tselect

Bits Field Name Attr. Description

[31:0] index WARL Selection index of trace and debug registers

Table 93: tselect CSR

The index field is a WARL field that does not hold indices of unimplemented TDRs. Even if

index can hold a TDR index, it does not guarantee the TDR exists. The type field of tdata1

must be inspected to determine whether the TDR exists.

20.1.2 Trace and Debug Data Registers (tdata1-3)

The tdata1-3 registers are XLEN-bit read/write registers selected from a larger underlying

bank of TDR registers by the tselect register.

Trace and Debug Data Register 1

CSR tdata1

Bits Field Name Attr. Description

[27:0] TDR-Specific Data

[31:28] type RO Type of the trace & debug register selected

by tselect

Table 94: tdata1 CSR

Trace and Debug Data Registers 2 and 3

CSR tdata2/3

Bits Field Name Attr. Description

[31:0] TDR-Specific Data

Table 95: tdata2/3 CSRs

The high nibble of tdata1 contains a 4-bit type code that is used to identify the type of TDR

selected by tselect. The currently defined types are shown below:

Type Description

0 No such TDR register

1 Reserved

2 Address/Data Match Trigger

≥ 3 Reserved

Table 96: tdata Types

The dmode bit selects between debug mode (dmode=1) and machine mode (dmode=1) views of

the registers, where only debug mode code can access the debug mode view of the TDRs. Any
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attempt to read/write the tdata1-3 registers in machine mode when dmode=1 raises an illegal

instruction exception.

20.1.3 Debug Control and Status Register (dcsr)

This register gives information about debug capabilities and status. Its detailed functionality is

described in The RISC‑V Debug Specification 0.11.

20.1.4 Debug PC dpc

When entering debug mode, the current PC is copied here. When leaving debug mode, execu-

tion resumes at this PC.

20.1.5 Debug Scratch dscratch

This register is generally reserved for use by Debug ROM in order to save registers needed by

the code in Debug ROM. The debugger may use it as described in The RISC‑V Debug Specifi-

cation 0.11.

20.2 Breakpoints

The FE310-G000 supports two hardware breakpoint registers per hart, which can be flexibly

shared between debug mode and machine mode.

When a breakpoint register is selected with tselect, the other CSRs access the following infor-

mation for the selected breakpoint:

CSR Name Breakpoint Alias Description

tselect tselect Breakpoint selection index

tdata1 mcontrol Breakpoint match control

tdata2 maddress Breakpoint match address

tdata3 N/A Reserved

Table 97: TDR CSRs when used as Breakpoints

20.2.1 Breakpoint Match Control Register mcontrol

Each breakpoint control register is a read/write register laid out in Table 98.
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Breakpoint Control Register (mcontrol)

Register Offset CSR

Bits Field

Name

Attr. Rst. Description

0 R WARL X Address match on LOAD

1 W WARL X Address match on STORE

2 X WARL X Address match on Instruction FETCH

3 U WARL X Address match on User Mode

4 S WARL X Address match on Supervisor Mode

5 Reserved WPRI X Reserved

6 M WARL X Address match on Machine Mode

[10:7] match WARL X Breakpoint Address Match type

11 chain WARL 0 Chain adjacent conditions.

[17:12] action WARL 0 Breakpoint action to take. 0 or 1.

18 timing WARL 0 Timing of the breakpoint. Always 0.

19 select WARL 0 Perform match on address or data.

Always 0.

20 Reserved WPRI X Reserved

[26:21] maskmax RO 4 Largest supported NAPOT range

27 dmode RW 0 Debug-Only access mode

[31:28] type RO 2 Address/Data match type, always 2

Table 98: Test and Debug Data Register 3

The type field is a 4-bit read-only field holding the value 2 to indicate this is a breakpoint con-

taining address match logic.

The bpaction field is an 8-bit read-write WARL field that specifies the available actions when

the address match is successful. The value 0 generates a breakpoint exception. The value 1

enters debug mode. Other actions are not implemented.

The R/W/X bits are individual WARL fields, and if set, indicate an address match should only be

successful for loads/stores/instruction fetches, respectively, and all combinations of imple-

mented bits must be supported.

The M/S/U bits are individual WARL fields, and if set, indicate that an address match should

only be successful in the machine/supervisor/user modes, respectively, and all combinations of

implemented bits must be supported.

The match field is a 4-bit read-write WARL field that encodes the type of address range for

breakpoint address matching. Three different match settings are currently supported: exact,

NAPOT, and arbitrary range. A single breakpoint register supports both exact address matches

and matches with address ranges that are naturally aligned powers-of-two (NAPOT) in size.

Breakpoint registers can be paired to specify arbitrary exact ranges, with the lower-numbered

breakpoint register giving the byte address at the bottom of the range and the higher-numbered
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breakpoint register giving the address 1 byte above the breakpoint range, and using the chain

bit to indicate both must match for the action to be taken.

NAPOT ranges make use of low-order bits of the associated breakpoint address register to

encode the size of the range as follows:

maddress Match type and size

a…aaaaaa Exact 1 byte

a…aaaaa0 2-byte NAPOT range

a…aaaa01 4-byte NAPOT range

a…aaa011 8-byte NAPOT range

a…aa0111 16-byte NAPOT range

a…a01111 32-byte NAPOT range

… …

a01…1111 231-byte NAPOT range

Table 99: NAPOT Size Encoding

The maskmax field is a 6-bit read-only field that specifies the largest supported NAPOT range.

The value is the logarithm base 2 of the number of bytes in the largest supported NAPOT range.

A value of 0 indicates that only exact address matches are supported (1-byte range). A value of

31 corresponds to the maximum NAPOT range, which is 231 bytes in size. The largest range is

encoded in maddress with the 30 least-significant bits set to 1, bit 30 set to 0, and bit 31 holding

the only address bit considered in the address comparison.

To provide breakpoints on an exact range, two neighboring breakpoints can be combined with

the chain bit. The first breakpoint can be set to match on an address using action of 2 (greater

than or equal). The second breakpoint can be set to match on address using action of 3 (less

than). Setting the chain bit on the first breakpoint prevents the second breakpoint from firing

unless they both match.

20.2.2 Breakpoint Match Address Register (maddress)

Each breakpoint match address register is an XLEN-bit read/write register used to hold signifi-

cant address bits for address matching and also the unary-encoded address masking informa-

tion for NAPOT ranges.

20.2.3 Breakpoint Execution

Breakpoint traps are taken precisely. Implementations that emulate misaligned accesses in soft-

ware will generate a breakpoint trap when either half of the emulated access falls within the

address range. Implementations that support misaligned accesses in hardware must trap if any

byte of an access falls within the matching range.
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Debug-mode breakpoint traps jump to the debug trap vector without altering machine-mode reg-

isters.

Machine-mode breakpoint traps jump to the exception vector with "Breakpoint" set in the

mcause register and with badaddr holding the instruction or data address that caused the trap.

20.2.4 Sharing Breakpoints Between Debug and Machine Mode

When debug mode uses a breakpoint register, it is no longer visible to machine mode (that is,

the tdrtype will be 0). Typically, a debugger will leave the breakpoints alone until it needs them,

either because a user explicitly requested one or because the user is debugging code in ROM.

20.3 Debug Memory Map

This section describes the debug module’s memory map when accessed via the regular system

interconnect. The debug module is only accessible to debug code running in debug mode on a

hart (or via a debug transport module).

20.3.1 Component Signal Registers (0x100–0x1FF)

The 8-bit address space from 0x100–0x1FF is used to access per-component single-bit regis-

ters. This region only supports 32-bit writes.

On a 32-bit write to this region, the 32-bit data value selects a component, bits 7–3 of the

address select one out of 32 per-component single-bit registers, and bit 2 is the value to be writ-

ten to that single-bit register, as shown below.

Component Signal Address Register (csra)

Register Offset

Bits Field Name Attr. Rst. Description

[1:0] 00 RO 0x0

2 value RW X Value to be written

[7:3] register RW X Register to be written

[31:8] 0x000001 RW 0x000001

Component Signal Data Register (csrd)

Register Offset

Bits Field Name Attr. Rst. Description

[31:0] component RW X Component select

Table 100: Component Signal Address Register

Table 101: Component Signal Data Register
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This addressing scheme was adopted so that RISC-V debug ROM routines can signal that a

hart has stopped using a single store instruction to an absolute address (offset from register x0)

and one free data register, which holds the hart ID.

The set of valid component identifiers is defined by each implementation.

There are only two per-component registers specified so far, the debug interrupt signal (register

0) and the halt notification register (register 1), resulting in the following four possible write

actions.

Address Written Action

0x100 Clear debug interrupt signal going to component

0x104 Set debug interrupt signal going to component

0x108 Clear halt notification from component

0x10C Set halt notification from component

20.3.2 Debug RAM (0x400–0x43f)

SiFive systems provide at least the minimal required amount of Debug RAM, which is 28 bytes

for an RV32 system and 64 bytes for an RV64 system.

20.3.3 Debug ROM (0x800–0xFFF)

This ROM region holds the debug routines on SiFive systems. The actual total size may vary

between implementations.

Table 102: Possible Write Actions
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Chapter 21

Debug Interface

The SiFive FE310-G000 includes the JTAG debug transport module (DTM) described in The

RISC‑V Debug Specification 0.11. This enables a single external industry-standard 1149.1

JTAG interface to test and debug the system. The JTAG interface is directly connected to input

pins.

21.1 JTAG TAPC State Machine

The JTAG controller includes the standard TAPC state machine shown in Figure 13. The state

machine is clocked with TCK. All transitions are labelled with the value on TMS, except for the

arc showing asynchronous reset when TRST=0.
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Figure 13: JTAG TAPC state machine.

21.2 Resetting JTAG Logic

The JTAG logic must be asynchronously reset by asserting the power-on-reset signal. This dri-

ves an internal jtag_reset signal.

Asserting jtag_reset resets both the JTAG DTM and debug module test logic. Because parts

of the debug logic require synchronous reset, the jtag_reset signal is synchronized inside the

FE310-G000.

During operation, the JTAG DTM logic can also be reset without jtag_reset by issuing 5

jtag_TCK clock ticks with jtag_TMS asserted. This action resets only the JTAG DTM, not the

debug module.

21.3 JTAG Clocking

The JTAG logic always operates in its own clock domain clocked by jtag_TCK. The JTAG logic

is fully static and has no minimum clock frequency. The maximum jtag_TCK frequency is part-

specific.
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21.4 JTAG Standard Instructions

The JTAG DTM implements the BYPASS and IDCODE instructions.

On the FE310-G000, the IDCODE is set to 0x10E31913.

21.5 JTAG Debug Commands

The JTAG DEBUG instruction gives access to the SiFive debug module by connecting the

debug scan register between jtag_TDI and jtag_TDO.

The debug scan register includes a 2-bit opcode field, a 5-bit debug module address field, and a

34-bit data field to allow various memory-mapped read/write operations to be specified with a

single scan of the debug scan register.

These are described in The RISC‑V Debug Specification 0.11.
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Chapter 22
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